A Question for Next Time

Consider a set \(S \subset \mathbb{R}^2 \) of \(2n \) points in general position and a balanced two-coloring of \(S \), that is, a partition of \(S \) into two sets \(R \cup B = S \) with \(|R| = |B| = n \).

A bichromatic plane perfect matching of \(S \) is a set of pairwise noncrossing straight-line edges such that every point of \(S \) is incident to exactly one edge, and every edge has one endpoint of each, \(R \) and \(B \).

Prove or disprove that such a matching always exists.