Delaunay Triangulations

Discrete and Computational Geometry
winter term 17/18
Motivation

• There are many different triangulations for a given point set (exponentially many).
• Not all triangulations are equally “nice”:

Two copies of the same point set ...
Motivation

- There are many different triangulations for a given point set (exponentially many).
- Not all triangulations are equally “nice”:

  - Canonical triangulation
  - Delaunay triangulation
Motivation

- There are many different triangulations for a given point set (exponentially many).
- Not all triangulations are equally “nice”: What is “nice”?

Which triangulation do you like more?
“Nice” Triangulations

- Not all triangulations are equally “nice”: Not all triangulations are equally good for a given application.

⇒ Terrain: We have height information for each point.

Which triangulation is better? Why?
“Nice” Triangulations

- Not all triangulations are equally “nice”: Not all triangulations are equally good for a given application.

⇒ Terrain: We have height information for each point.

Interpolation points far away

Interpolation points closer
“Nice” Triangulations

- Not all triangulations are equally “nice”: Not all triangulations are equally good for a given application.

⇒ Terrain: We have height information for each point.
“Nice” Triangulations

- Not all triangulations are equally “nice”: Not all triangulations are equally good for a given application.

⇒ Terrain: We have height information for each point.

- Long and skinny triangles
- Short and thick triangles
“Nice” Triangulations

- Not all triangulations are equally “nice”: Not all triangulations are equally good for a given application.

⇒ Terrain: We have height information for each point.

Small small angles

Large small angles
“Nice” Triangulations

- Not all triangulations are equally “nice”: Not all triangulations are equally good for a given application.

⇒ Terrain: We have height information for each point.

Goal:
1. introduce Delaunay triangulations
2. prove that they are indeed nice

Small small angles

Large small angles
The Empty Circle Property

“We will now move on to study the ominous and supposedly nice Delaunay triangulations”

**Definition.** A triangulation of a finite point set $S \subset \mathbb{R}^2$ is called a **Delaunay triangulation**, if the **circumcircle of every triangle is empty** (has no points of $S$ in its interior).

**Circumcircle** of a triangle:
The Empty Circle Property

“We will now move on to study the ominous and supposedly nice Delaunay triangulations”

Definition. A triangulation of a finite point set $S \subset \mathbb{R}^2$ is called a Delaunay triangulation, if the circumcircle of every triangle is empty (has no points of $S$ in its interior).

Example: Point set from before.
The Empty Circle Property

“We will now move on to study the ominous and supposedly nice Delaunay triangulations”

Definition. A triangulation of a finite point set $S \subset \mathbb{R}^2$ is called a **Delaunay triangulation**, if the **circumcircle of every triangle is empty** (has no points of $S$ in its interior).

Example: Point set from before.
The Empty Circle Property

“We will now move on to study the ominous and supposedly nice Delaunay triangulations”

Definition. A triangulation of a finite point set \( S \subset \mathbb{R}^2 \) is called a Delaunay triangulation, if the circumcircle of every triangle is empty (has no points of \( S \) in its interior).

Example: Point set from before.
The Empty Circle Property

“We will now move on to study the ominous and supposedly nice Delaunay triangulations”

**Definition.** A triangulation of a finite point set $S \subset \mathbb{R}^2$ is called a **Delaunay triangulation**, if the **circumcircle of every triangle is empty** (has no points of $S$ in its interior).

**Basics:** Four points in convex position

Two triangulations: non-Delaunay and Delaunay
The Empty Circle Property

“We will now move on to study the ominous and supposedly nice Delaunay triangulations”

**Definition.** A triangulation of a finite point set $S \subseteq \mathbb{R}^2$ is called a **Delaunay triangulation**, if the *circumcircle of every triangle is empty* (has no points of $S$ in its interior).

**Basics:** Four points in convex position

Two triangulations: Delaunay Delaunay
The Empty Circle Property

“We will now move on to study the ominous and supposedly nice Delaunay triangulations”

**Definition.** A triangulation of a finite point set \( S \subset \mathbb{R}^2 \) is called a **Delaunay triangulation**, if the **circumcircle of every triangle is empty** (has no points of \( S \) in its interior).

**Basics:** Four points in convex position (?)

Not a valid triangle!

Only one triangulation: Delaunay
The Empty Circle Property

“We will now move on to study the ominous and supposedly nice Delaunay triangulations”

**Definition.** A triangulation of a finite point set $S \subset \mathbb{R}^2$ is called a **Delaunay triangulation**, if the **circumcircle of every triangle is empty** (has no points of $S$ in its interior).

**Basics:** Four points in convex position (?)

No triangulation!

**Remark.** Every finite point set $S \subset \mathbb{R}^2$ with $|S| \geq 3$ and not all points **collinear** admits a triangulation.
The Empty Circle Property

Proposition. Four points in convex position that are not cocircular have exactly one Delaunay triangulation.

Proof by picture.

Consider circle $C_1 = abc$, assume $d$ outside $C_1$.

⇒ $b$ outside $C_1' = acd$

⇒ $c$ inside $C_2 = abd$

⇒ one Delaunay tr.

Case $d$ inside $C_1$ is symmetric
The Empty Circle Property

**Proposition.** Four points in convex position that are not cocircular have exactly one Delaunay triangulation.

**Proof by picture.**

Consider circle $C_1 = abc$, assume $d$ outside $C_1$.

$\Rightarrow b$ outside $C_1' = acd$

$\Rightarrow c$ inside $C_2 = abd$

$\Rightarrow$ one Delaunay

Case $d$ inside $C_1$ is symmetric

Case with 3 collinear points: similar

4 collinear points: also cocircular
The Empty Circle Property

**Proposition.** Four points in convex position that are not cocircular have exactly one Delaunay triangulation.

**Proof by picture.**

non-convex point set:

Only one triangulation: Delaunay
The Empty Circle Property

**Proposition.** Four points in convex position that are not cocircular have exactly one Delaunay triangulation.

**Corollary.** Any set of four points (not all of them collinear) has at least one Delaunay triangulation.
The Lawson Flip Algorithm

Does every point set (not all points collinear) have a Delaunay triangulation?

- True for four points. Only one situation where not every triangulation is Delaunay:

  - The flip from non-Delaunay to Delaunay is called **Lawson Flip**.
  - A sub-triangulation of four points in a triangulation (of more than four points) is called **locally Delaunay**, if it is a Delaunay triangulation of those four points.
The Lawson Flip Algorithm

Does every point set (not all points collinear) have a Delaunay triangulation?

The Lawson Flip algorithm.
1. Compute some arbitrary triangulation.
2. While there exists a subtriangulation of four points that is not locally Delaunay, perform a Lawson flip.

We will show:
- The Lawson Flip algorithm terminates and
- results in a Delaunay triangulation.

Corollary.
Locally Delaunay everywhere = Globally Delaunay
The Parabolic Lifting Map

A projection from the plane to the unit paraboloid

The parabolic lifting map is defined by the function

\[ \ell : \mathbb{R}^2 \rightarrow \mathbb{R}^3, \quad \ell(x, y) = (x, y, x^2 + y^2). \]
The Parabolic Lifting Map

A little bit of algebra ...

• Any two points \( a, b \in \mathbb{R}^2 \) are collinear.

• When are three points \( a, b, c \in \mathbb{R}^2 \) are collinear?
  \[
  D := \begin{vmatrix}
  x_a & y_a & 1 \\
  x_b & y_b & 1 \\
  x_c & y_c & 1
  \end{vmatrix} = 0
  \]

• What if \( D \neq 0 \)?
  Then \( c \) lies to the left or right of the line through \( a, b \).
The Parabolic Lifting Map

A little bit of algebra ...

- Any three points $a, b, c \in \mathbb{R}^3$ are coplanar.
- Four points $a, b, c, d \in \mathbb{R}^3$ are coplanar, if
  $$D := \begin{vmatrix} x_a & y_a & z_a & 1 \\ x_b & y_b & z_b & 1 \\ x_c & y_c & z_c & 1 \\ x_d & y_d & z_d & 1 \end{vmatrix} = 0$$

- What if $D \neq 0$?
  Then $d$ lies above or below the plane through $a, b, c$. 
The Parabolic Lifting Map

A little bit of algebra ...

- Any three points \( a, b, c \in \mathbb{R}^2 \) are cocircular.
- Four points \( a, b, c, d \in \mathbb{R}^2 \) are cocircular if

\[
D := \begin{vmatrix}
 x_a & y_a & x_a^2 + y_a^2 & 1 \\
 x_b & y_b & x_b^2 + y_b^2 & 1 \\
 x_c & y_c & x_c^2 + y_c^2 & 1 \\
 x_d & y_d & x_d^2 + y_d^2 & 1 \\
\end{vmatrix} = 0
\]

- What if \( D \neq 0 \)?
  Then \( d \) lies inside or outside the circle through \( a, b, c \).
The Parabolic Lifting Map

Let’s compare once more!

- Any three points \( a, b, c \in \mathbb{R}^3 \) are coplanar.
- Four points \( a, b, c, d \in \mathbb{R}^3 \) are coplanar, if

\[
D := \begin{vmatrix}
  x_a & y_a & z_a & 1 \\
  x_b & y_b & z_b & 1 \\
  x_c & y_c & z_c & 1 \\
  x_d & y_d & z_d & 1
\end{vmatrix} = 0
\]

- What if \( D \neq 0 \)?
  Then \( d \) lies above or below the plane through \( a, b, c \).
The Parabolic Lifting Map

Let’s compare once more!

- Any three points \(a, b, c \in \mathbb{R}^2\) are cocircular.
- Four points \(a, b, c, d \in \mathbb{R}^2\) are cocircular if

\[
D := \begin{vmatrix}
    x_a & y_a & x_a^2 + y_a^2 & 1 \\
    x_b & y_b & x_b^2 + y_b^2 & 1 \\
    x_c & y_c & x_c^2 + y_c^2 & 1 \\
    x_d & y_d & x_d^2 + y_d^2 & 1
\end{vmatrix} = 0
\]

- What if \(D \neq 0\)?
  Then \(d\) lies inside or outside the circle through \(a, b, c\).
The Parabolic Lifting Map

A projection from the plane to the unit paraboloid

The parabolic lifting map is defined by the function

\[ \ell : \mathbb{R}^2 \rightarrow \mathbb{R}^3, \quad \ell(x, y) = (x, y, x^2 + y^2). \]

- Cocircular points in the plane are coplanar in the lifting
- \( d \) lies inside a circle \( C \subset \mathbb{R}^2 \) if and only if \( \ell(d) \) lies below the plane through \( \ell(C) \subset \mathbb{R}^3 \)
Consider again a \textbf{Lawson flip} $ac \rightarrow bd$:
Termination of the Lawson Flip Algorithm

Consider again a Lawson flip $ac \rightarrow bd$:

$bd$ lies completely in a circle $C$ through $a$ and $c$.

$\Rightarrow \ell(b)\ell(d)$ lies completely below the plane through $\ell(C)$.

$\Rightarrow$ after the flip $\ell(a)\ell(c)$ lies above the lifted triangulation.

$\Rightarrow$ An edge that is flipped away never comes back.

$\Rightarrow$ Each of the $\binom{n}{2}$ edges is flipped at most once.

$\Rightarrow$ The algorithm terminates after at most $\binom{n}{2} - 3$ flips.
Correctness of the Lawson Flip Algorithm

Locally Delaunay everywhere = Globally Delaunay

**We know:** After termination of the algorithm every subtriangulation of four points is locally Delaunay.

**We want:** After termination of the algorithm we in fact have a Delaunay triangulation.

**Proof.** Assume the result $T(S')$ contains a triangle $\Delta$ with a point $p \in S$ strictly inside $C(\Delta)$. Choose a pair $(\Delta, p)$ with minimum distance $d$ between $p$ and $\Delta$.

Consider the edge $e$ of $\Delta$ closest to $p$ and the second triangle $\Delta'$ at $e$.

The circumcircle $C(\Delta')$ contains $p$ and $p$ is closer to $\Delta'$ than to $\Delta$. 
Next

How many Delaunay triangulations can a point set have?

- Definition of the Delaunay graph
- A central property of this graph

Why are we actually interested in Delaunay triangulations?

- Angles in Delaunay triangulations
- Some further properties of Delaunay triangulations

What if we need a triangulation with some non-Delaunay edges, for example to model a river in a terrain?

- Constrained Delaunay triangulations
The Delaunay Graph

How many Delaunay triangulations can a point set have?

**Definition.** The **Delaunay graph** of a point set $S \subset \mathbb{R}^2$ contains as edges all line segments $ab, \ a, b \in S$, that are contained in every Delaunay triangulation of $S$.

**Lemma.** An edge $ab, \ a, b \in S$ is in the Delaunay graph of $S$ if and only if there exists a circle $C$ through $a, b$ such that all other points of $S$ lie strictly outside $C$. 

![Diagram](image.png)
The Delaunay Graph

**Lemma.** An edge \( ab, \ a, b \in S \), is in the Delaunay graph \( \mathcal{D} \) of \( S \) if and only if there exists a circle \( C \) through \( a, b \) such that all other points of \( S \) lie strictly outside \( C \).

**Proof \( \Rightarrow \)**
Consider edge \( ab \) of \( \mathcal{D}(S) \) + Delaunay triangulation \( T \) of \( S \).
\[
\Rightarrow \exists \ \Delta = abc \text{ in } T, \ C(\Delta) \text{ has no points of } S \text{ in its interior.}
\]
Assume \( \exists \ p \in S \text{ on } \partial C(\Delta) \) s.t. \( cp \) intersects \( ab \).
\[
\Rightarrow \exists \ \text{triangle } \Delta' = abc' \text{ in } T \text{ with } c' \in \partial C(\Delta). 
\]
\[
\Rightarrow \text{Flipping } ab \text{ to } cc' \text{ gives Delaunay triangulation } T' 
\]
\[
\Leftrightarrow \exists \ p \in S \text{ on } \partial C'(\Delta). 
\]
\[
\Rightarrow \text{all points outside } C'(\Delta). 
\]
The Delaunay Graph

Lemma. An edge $ab$, $a, b \in S$, is in the Delaunay graph $D$ of $S$ if and only if there exists a circle $C$ through $a, b$ such that all other points of $S$ lie strictly outside $C$.

Proof $\Rightarrow$
Consider edge $ab$ of $D(S) +$ Delaunay triangulation $T$ of $S$.
$\Rightarrow \exists \Delta = abc$ in $T$, $C(\Delta)$ has no points of $S$ in its interior.
Assume $\exists p \in S$ on $\partial C(\Delta)$ s.t. $cp$ intersects $ab$.
$\Rightarrow \exists$ triangle $\Delta' = abc'$ in $T$ with $c' \in \partial C(\Delta)$.
$\Rightarrow$ Flipping $ab$ to $cc'$ gives Delaunay triangulation $T'$
$\Leftrightarrow$ to $\exists p \in S$ on $\partial C(\Delta)$.
$\Rightarrow$ all points outside $C(\Delta)$.
$\Rightarrow \exists$ circle $C'$ through $a,b$ with all other points outside $C'$.
The Delaunay Graph

**Lemma.** An edge \( ab \), \( a, b \in S \), is in the Delaunay graph \( D \) of \( S \) if and only if there exists a circle \( C \) through \( a, b \) such that all other points of \( S \) lie strictly outside \( C \).

**Proof \( \Leftarrow \)**
Consider edge \( ab \) with empty circle \( C \).
Assume \( \exists \) Delaunay triangulation \( T \) without edge \( ab \).

\( \Rightarrow \) \( T \) contains at least one edge that intersects \( ab \).
Consider edge \( cd \) of \( T \) that intersects \( ab \) closest to \( b \).

\( \Rightarrow cd \) together with \( b \) forms a triangle \( \Delta = bcd \) of \( T \).

Circle \( C' \) through \( abc \): \( d \) outside
Circle \( C'' \) through \( bcd \): \( a \) inside

\( \Rightarrow C''' = C(\Delta) \) not empty to \( T \) Delaunay triangulation.
The Delaunay Graph

Lemma. An edge \( ab, \ a, b \in S \), is in the Delaunay graph \( D \) of \( S \) if and only if there exists a circle \( C \) through \( a, b \) such that all other points of \( S \) lie strictly outside \( C \).

Corollary. Every point set \( S \subset \mathbb{R}^2 \) with no four cocircular points has a unique Delaunay triangulation.

Remark. There exist point sets \( S \subset \mathbb{R}^2 \) with exponentially many different Delaunay triangulations.
Angles in Delaunay Triangulations

Why are we actually interested in Delaunay triangulations?

Recall. We compared the canonical triangulation with the Delaunay triangulation for some point set.

Question: Is this true in general or just for that point set?
Angles in Delaunay Triangulations

Why are we actually interested in Delaunay triangulations?

**Recall.** Given a point set $S \subset \mathbb{R}^2$, every triangulation of $S$ has the same number $m$ of triangles.

**Definition.** Given a triangulation $T$ of a point set $S \subset \mathbb{R}^2$, the **angle vector** $A(T) = (\alpha_1, \alpha_2, \ldots, \alpha_{3m})$ of $T$ is the sorted sequence of the interior angles of $T$.

$$\alpha_1 \leq \alpha_2 \leq \ldots \leq \alpha_{3m}$$
Angles in Delaunay Triangulations

Why are we actually interested in Delaunay triangulations?

Recall. Given a point set $S \subset \mathbb{R}^2$, every triangulation of $S$ has the same number $m$ of triangles.

Definition. Given a triangulation $T$ of a point set $S \subset \mathbb{R}^2$, the angle vector $A(T) = (\alpha_1, \alpha_2, \ldots, \alpha_{3m})$ of $T$ is the sorted sequence of the interior angles of $T$.

Consider a second triangulation $T'$ of $S$. We say that $A(T) < A(T')$ if $A(T)$ is lexicographically smaller than $A(T')$. 

$$\exists 1 \leq i \leq 3m : \alpha_j = \alpha'_j \forall 1 \leq j < i \text{ and } \alpha_i < \alpha'_i.$$
Angles in Delaunay Triangulations

Why are we actually interested in Delaunay triangulations?

Recall. Given a point set \( S \subset \mathbb{R}^2 \), every triangulation of \( S \) has the same number \( m \) of triangles.

Definition. Given a triangulation \( T \) of a point set \( S \subset \mathbb{R}^2 \), the angle vector \( A(T) = (\alpha_1, \alpha_2, \ldots, \alpha_{3m}) \) of \( T \) is the sorted sequence of the interior angles of \( T \).

Consider a second triangulation \( T' \) of \( S \). We say that \( A(T) < A(T') \) if \( A(T) \) is lexicographically smaller than \( A(T') \).

Theorem. For any point set \( S \subset \mathbb{R}^2 \) with no four cocircular points, the Delaunay triangulation strictly maximizes the angle vector among all triangulations of \( S \).
Angles in Delaunay Triangulations

Why are we actually interested in Delaunay triangulations?

Recall. Given a point set $S \subset \mathbb{R}^2$, every triangulation of $S$ has the same number $m$ of triangles.

Definition. Given a triangulation $T$ of a point set $S \subset \mathbb{R}^2$, the angle vector $A(T) = (\alpha_1, \alpha_2, \ldots, \alpha_{3m})$ of $T$ is the sorted sequence of the interior angles of $T$.

Consider a second triangulation $T'$ of $S$. We say that $A(T) < A(T')$ if $A(T)$ is lexicographically smaller than $A(T')$.

Theorem. For any point set $S \subset \mathbb{R}^2$ with no four cocircular points, the Delaunay triangulation strictly maximizes the angle vector among all triangulations of $S$. $A(T) < A(D)$ for all triangulations $T \neq D$ of $S$. 
Angles in Delaunay Triangulations

**Theorem.** For any point set $S \subseteq \mathbb{R}^2$ with no four cocircular points, the Delaunay triangulation strictly maximizes the angle vector among all triangulations of $S$.

**Proof.**
If every Lawson flip increases the angle vector we are done: Every triangulation $T$ of $S$ can be transformed to the Delaunay triangulation $DT$ via Lawson flips.
Angles in Delaunay Triangulations

**Theorem.** For any point set $S \subset \mathbb{R}^2$ with no four cocircular points, the Delaunay triangulation strictly maximizes the angle vector among all triangulations of $S$.

**Proof.**
Four cocircular points.

**Claim:**
Theorem. For any point set $S \subset \mathbb{R}^2$ with no four cocircular points, the Delaunay triangulation strictly maximizes the angle vector among all triangulations of $S$.

Proof.

Four cocircular points.

Claim:

Four non-cocircular points.

\[ \alpha > \bar{\alpha}, \quad \bar{\beta} > \beta, \quad \gamma < \gamma, \quad \delta < \delta \]
Angles in Delaunay Triangulations

**Theorem.** For any point set \( S \subset \mathbb{R}^2 \) with no four cocircular points, the Delaunay triangulation strictly maximizes the angle vector among all triangulations of \( S \).

**Proof.**

Lawson flip \( bd \rightarrow ac, T \rightarrow T' \).

Angles before flip:

\( \bar{\alpha} + \bar{\beta}, \, \delta, \gamma, \alpha, \, \gamma + \delta, \, \beta \)

Angles after flip:

\( \bar{\beta}, \, \delta + \alpha, \gamma, \bar{\alpha}, \delta, \beta + \gamma \)

\( \Rightarrow \) for every angle after there is at least one smaller angle before.

\( \Rightarrow A(T) < A(T') \)
Angles in Delaunay Triangulations

**Theorem.** For any point set $S \subset \mathbb{R}^2$ with no four cocircular points, the Delaunay triangulation strictly maximizes the angle vector among all triangulations of $S$.

**Proof.**

Four cocircular points.

**Proof of Claim.**

Claim:
Angles in Delaunay Triangulations

**Theorem.** For any point set $S \subset \mathbb{R}^2$ with no four cocircular points, the Delaunay triangulation strictly maximizes the angle vector among all triangulations of $S$.

**Proof.**
Four cocircular points.

**Claim:**

**Proof of Claim.**
Angles in Delaunay Triangulations

**Theorem.** For any point set $S \subseteq \mathbb{R}^2$ with no four cocircular points, the Delaunay triangulation strictly maximizes the angle vector among all triangulations of $S$.

**Proof.**
Four cocircular points.

**Claim:**

**Proof of Claim.**

Case 1: $m$ outside triangle $abc$

triangle $mbc$:  

$\pi = \delta + 2\beta$

triangle $abc$:  

$\pi = 2\alpha + 2\beta - 2\gamma$

$mbc$:  

$\delta = \pi - 2\beta$

$abc$:  

$2\beta = \pi - 2\alpha + 2\gamma$

$\phi = \alpha - \gamma \Rightarrow \delta = 2\phi$
Angles in Delaunay Triangulations

**Theorem.** For any point set \( S \subset \mathbb{R}^2 \) with no four cocircular points, the Delaunay triangulation strictly maximizes the angle vector among all triangulations of \( S \).

**Proof.**
Four cocircular points.

**Claim:**

**Proof of Claim.**
Case 2: \( m \) inside triangle \( abc \)

\[
\begin{align*}
\triangle mbc & : \quad \pi = \delta + 2\beta \\
\triangle abc & : \quad \pi = 2\alpha + 2\beta + 2\gamma \\
mbc & : \quad \delta = \pi - 2\beta \\
abc & : \quad 2\beta = \pi - 2\alpha - 2\gamma \\
\phi & = \alpha + \gamma \Rightarrow \delta = 2\phi
\end{align*}
\]
Angles in Delaunay Triangulations

**Theorem.** For any point set \( S \subset \mathbb{R}^2 \) with no four cocircular points, the Delaunay triangulation strictly maximizes the angle vector among all triangulations of \( S \).

**Question.** What if the point set has cocircular points?

Angle vectors are in general different!
Angles in Delaunay Triangulations

**Theorem.** For any point set $S \subset \mathbb{R}^2$ with no four cocircular points, the Delaunay triangulation strictly maximizes the angle vector among all triangulations of $S$.

**Theorem.** For any point set $S \subset \mathbb{R}^2$ (not all points coll.), every Delaunay triangulation maximizes the smallest angle among all triangulations of $S$.

**Proof.**
- Take an arbitrary Delaunay triangulation $DT$ of $S$.
- Slightly perturb $S$ to eliminate cocircularities.
- Apply Lawson flips to get the unique Delauny tr. $D^*$.
- Perform the same flip sequence in $S$ (unperturbed).
  $\Rightarrow$ All those flips are between cocircular points.
  $\Rightarrow$ The value of the smallest angle never changes.
Properties of Delaunay Triangulations

Delaunay triangulations are “nice”

- Every Delaunay triangulation of a point set $S$ maximizes the smallest angle among all triangulations of $S$.
- If the Delaunay triangulation of $S$ is unique, it strictly maximizes the angle vector among all triangulations of $S$.
- Further, every Delaunay triangulation of a point set $S$ minimizes the largest circumcircle and maximizes the mean inradius among all triangulations of $S$.
- Hence, Delaunay triangulations tend to
  - avoid narrow triangles
  - avoid numerical problems
  - allow fast convergence in FEM
Constrained Delaunay Triangulations

What if we need a triangulation with some non-Delaunay edges, for example to model a river in a terrain?

Idea. Given a point set $S \subset \mathbb{R}^2$ and a plane geometric graph $G$ on $S$, we want to complete $G$ to a triangulation of $S$ that is as close to a Delaunay triangulation as possible.
Constrained Delaunay Triangulations

What if we need a triangulation with some non-Delaunay edges, for example to model a river in a terrain?

**Definition.** Given a point set $S \subset \mathbb{R}^2$ and a plane straight-line graph $G$ on $S$, a triangulation of $S$ that contains all edges of $G$ is a **constrained Delaunay triangulation** of $S$ with respect to $G$ if the circumcircle of each triangle $\Delta$ contains no points that are visible from the interior of $\Delta$.

Every straight-line connection between a point of $S$ inside the circumcircle of $\Delta$ and a point inside $\Delta$ intersects an edge of $G$. 

Constrained Delaunay Triangulations

What if we need a triangulation with some non-Delaunay edges, for example to model a river in a terrain?
Constrained Delaunay Triangulations

What if we need a triangulation with some non-Delaunay edges, for example to model a river in a terrain?
Constrained Delaunay Triangulations

What if we need a triangulation with some non-Delaunay edges, for example to model a river in a terrain?

Definition. Given a point set \( S \subset \mathbb{R}^2 \) and a plane straight-line graph \( G \) on \( S \), a triangulation of \( S \) that contains all edges of \( G \) is a constrained Delaunay triangulation of \( S \) with respect to \( G \) if the circumcircle of each triangle \( \Delta \) contains no points that are visible from the interior of \( \Delta \).

Theorem. For any point set \( S \subset \mathbb{R}^2 \) and any plane straight-line graph \( G \) on \( S \), there exists a constrained Delaunay triangulation of \( S \) with respect to \( G \).
Some Exercises

1. For every $n \geq 3$ give an example of an $n$-point set in which every Delaunay triangulation of the point set contains a vertex of degree $n - 1$.

2. A Minimum spanning tree (MST) of a point set $S \subset \mathbb{R}^2$ is a spanning tree that minimizes the sum of the edge lengths among all spanning trees of $S$.

Prove or disprove the following statements:
(a) Every MST is a plane graph.
(b) Every MST of $S$ contains an edge between some pair of points of $S$ with minimum distance.
(c) Every MST of $S$ contains an edge between every pair of points of $S$ with minimum distance.
(d) Every Delaunay triangulation of $S$ contains an MST of $S$. 
Some Exercises

3. **Prove or disprove** that every triangulation with minimum total edge length is a Delaunay triangulation.