1. Consider a bichromatic set S with r red and g green points in the plane in general position, i.e., no three points of S are collinear. A red triangle (in S) is a triangle for which all three vertices are red points of S; see Figure 1. A green point p of S is said to be enclosed by a red triangle Δ, if p lies in the interior of Δ.

![Figure 1: Examples of red triangles that enclose green points of S.](image.jpg)

The task is to determine all green points of S for which there exists at least one enclosing red triangle in S. Design an efficient algorithm for solving this task. Explain your solution in detail, show its correctness, and analyze its runtime and memory requirements.

Remark: The algorithm only has to report the enclosed green points. It need not report any enclosing red triangles.