Classical Themes of Computer Science
Functional Programming (Part 1/2)

Bernhard K. Aichernig

Institute for Software Technology
Graz University of Technology
Austria

Winter Term 2016/17

Version: October 5, 2016
Agenda

- Functional Programming?
- Elements of Functional Programming
- Recursive Functions
- Higher-Order Functions
- Lists
Programming Paradigms

Paradigm: In science, a paradigm describes distinct concepts or thought patterns in some scientific discipline.

Main programming paradigms:
- imperative programming
- functional programming
- logic programming

Orthogonal to it:
- object-oriented programming
History of Functional Programming Languages

1959 Lisp
1975-77 ML, FP, Scheme
1978 Smalltalk
1986 Standard ML
1988 Erlang
1990 Haskell
1999 XSLT
2000 OCaml
2003 Scala, XQuery
2005 F#
2007 Clojure
What is a Functional Program?

- A Functional Program (FP) is an expression (syntax).
- This expression denotes a Value (semantics).
- To run a program has the same meaning as evaluating the expression.

Functions are values, too!
An expression is

▶ a constant, or
▶ a variable, or
▶ a term of the form $e_1(e_2)$, with e_1 and e_2 being expressions. The evaluation of e_1 must return a function. (prefix form)

Consequence: A function may be applied to a function or returning a function (= higher-order functions).

Note: All n-ary functions can be transformed into unary functions (= currying).

Scala: All binary functions can be written in infix form.
Variables

- are like in mathematics
- refer to values, not memory locations
- are immutable
- allow only single assignment

Easy to parallelize: no mutable state, no shared memory, and no locks.
Pure functional programming languages accept functional programs only. They do not have mutable variables, assignments, or imperative control structures.

- Pure Lisp, XSLT, XPath, XQuery, FP
- Haskell (without I/O Monad or UnsafePerformIO)
FP Languages in a Wider Sense

In a wider sense a functional programming language enables the construction of elegant programs that focus on functions.

- Lisp, Scheme, Racket, Clojure
- SML, Ocaml, F#
- Haskell (full language)
- Scala
- Smalltalk, Ruby (!)
Scala

- Combines functional programming and OO
- By Martin Odersky, EPFL
- Compiles to JVM
- Strongly typed (generic types)
- Type inferencing (minimal set of type declarations, rest inferred)
- Pattern matching, case classes
- Functions as parameters
- Language is extensible (DSL), e.g., Erlang’s actor model
- LinkedIn, Twitter, Novell, Sony, Siemens, etc.
Evaluation of Expressions

Expressions evaluate like in a calculator and left to right:

\[(4 - 1) \times (4 + 5)\]
\[\rightarrow 3 \times (4 + 5)\]
\[\rightarrow 3 \times 9\]
\[\rightarrow 27\]

In FP we can give expressions a name:

\[\text{val } x = 4 + 5\]
\[3 \times x\]
\[\rightarrow\]
\[\text{val } x = 9\]
\[3 \times x\]
\[\rightarrow 3 \times 9\]
\[\rightarrow 27\]

Substitution principle: we replace variable names with their definitions.
Lazy Evaluation of Expressions

Alternatively, using `def`, we may delay the evaluation of the definition until the variable is needed:

```
def x = 4 + 5
3 * x
→
3 * (4 + 5)
→
3 * 9
→
27
```

This is called lazy evaluation.
Functions

We may parameterize our definitions:

```scala
def square(x: Int) = x * x

def sumOfSquares(x: Int, y: Int) = square(x) + square(y)
```

By default, function parameters are evaluated first, from left to right:

```
sumOfSquares(1 + 2, 1 + 3)
→ sumOfSquares(3, 1 + 3)
→ sumOfSquares(3, 4)
→ square(3) + square(4)
→ 3 * 3 + square(4)
→ 9 + square(4)
→ 9 + 4 * 4
→ 9 + 16
→ 25
```

This is called call by value.
We may also delay the evaluation parameters using a special type declaration: $=>$Type

```java
def sumOfSquares(x: $=>$ Int, y: Int) = square(x) + square(y)
sumOfSquares(1 + 2, 1 + 3)
```

```
→ sumOfSquares(1 + 2, 4)
→ square(1 + 2) + square(4)
→ square(3) + square(4)
→ 3 * 3 + square(4)
→ 9 + square(4)
→ 9 + 4 * 4
→ 9 + 16
→ 25
```

This lazy evaluation of parameters is known as call by name.
Both evaluation strategies reduce an expression to the same value, provided both evaluations terminate.

If Call by Value evaluation of an expression terminates, then its Call by Name evaluation terminates, too.

The reverse is not true!
Non-termination Example

Consider a non-terminating (recursive) expression:

``` scala
1 def loop : Int = loop
2 def firstByValue(x: Int, y: Int) = x
3 def firstByName(x: Int, y: => Int) = x
```

Evaluating an expression under

call by value:
```
firstByValue(1 + 2, loop)
→
firstByValue(3, loop)
→
firstByValue(3, loop)
→
```

...

call by name:
```
firstByName(1 + 2, loop)
→
firstByName(3, loop)
→
3
```

Here, Call by Name is also more efficient!
Boolean Expressions

Reduction rules for Boolean expressions:

\[!true \rightarrow false \]
\[!false \rightarrow true \]
\[true \&\& b \rightarrow b \]
\[false \&\& b \rightarrow false \]
\[true \mid\mid b \rightarrow true \]
\[false \mid\mid b \rightarrow b \]

\(b \) is an arbitrary Boolean expression

Note that \&\& and \mid\mid use short-circuit evaluation

Hence, in Boolean expressions lazy evaluation, e.g. Call by Name, may be beneficial.
In FP we use conditional expressions, not conditional statements, to express alternatives.

```scala
1  def abs(x: Int) = if (x >= 0) x else -x
```

The Scala conditional `if-else` looks like Java’s, but has expression semantics.

Reduction rules for conditional expressions:

- `if (true) e else f → e`
- `if (false) e else f → f`

`e, f` are arbitrary expressions.
Recursive Functions

In FP we use recursion in order to express iteration:

```
1   def fact(n: Int): Int =
2     if (n == 0) 1
3     else n * fact(n - 1)
```

We can easily explain recursion using the substitution model:

\[
\text{fact}(3) \\
\rightarrow \text{if } (3 \text{ == 0)} 1 \text{ else } 3 \times \text{fact}(3 - 1) \\
\rightarrow \text{if } (false) 1 \text{ else } 3 \times \text{fact}(3 - 1) \\
\rightarrow 3 \times \text{fact}(3 - 1) \\
\rightarrow 3 \times \text{fact}(2) \\
\rightarrow 3 \times \text{if } (2 \text{ == 0)} 1 \text{ else } 2 \times \text{fact}(2 - 1) \\
\rightarrow 3 \times \text{if } (false) 1 \text{ else } 2 \times \text{fact}(2 - 1) \\
\rightarrow 3 \times 2 \times \text{fact}(2 - 1) \\
\rightarrow 3 \times 2 \times \text{fact}(1)
\]
Recursive Functions (cont.)

\[
\begin{align*}
\rightarrow & \quad 3 \times 2 \times \text{fact}(1) \\
\rightarrow & \quad 3 \times 2 \times \text{if} \ (1 == 0) \ 1 \ \text{else} \ 1 \times \text{fact}(1 - 1) \\
\rightarrow & \quad 3 \times 2 \times \text{if} \ (\text{false}) \ 1 \ \text{else} \ 1 \times \text{fact}(1 - 1) \\
\rightarrow & \quad 3 \times 2 \times 1 \times \text{fact}(1 - 1) \\
\rightarrow & \quad 3 \times 2 \times 1 \times \text{fact}(0) \\
\rightarrow & \quad 3 \times 2 \times 1 \times \text{if} \ (0 == 0) \ 1 \ \text{else} \ 0 \times \text{fact}(0 - 1) \\
\rightarrow & \quad 3 \times 2 \times 1 \times \text{if} \ (\text{true}) \ 1 \ \text{else} \ 0 \times \text{fact}(0 - 1) \\
\rightarrow & \quad 3 \times 2 \times 1 \times 1 \\
\rightarrow & \quad 6
\end{align*}
\]

Note the redundant last call!

The substitution principle is possible, because we do not have side-effects (mutable data).
Pattern Expressions

Most FP languages support pattern matching:

```scala
def fact1(n: Int): Int = n match {
  case 0 => 1 /* constant pattern */
  case _ => n * fact1(n - 1) /* don't care pattern */
}
```

Avoiding the last call:

```scala
def fact2(n: Int): Int = n match {
  case 0 => 1
  case 1 => 1
  case _ => n * fact2(n - 1)
}
```
Pattern Expressions with Guards

A defensive function using guards:

```scala
def fact3(n: Int): Int = n match {
  case _ if n < 0 => throw new Error("wrong argument!")
  case 0 => 1
  case 1 => 1
  case _ => n * fact3(n - 1)
}
```

In Scala, we may throw any Java exception.
A MatchError exception is thrown if no pattern matches the value of the selector.

Hence, we could also guard against non-termination, like this:

```scala
def fact4(n: Int): Int = n match {
  case 0 => 1
  case 1 => 1
  case _ if n > 1 => n * fact4(n - 1)
}
```

We will see more forms of patterns later!
Evaluating Match Expressions

An expression of the form

\[e \texttt{ match} \{ \texttt{case } p_1 \Rightarrow e_1 \ldots \texttt{ case } p_n \Rightarrow e_n \} \]

matches the value of the selector e with the patterns p1, ..., pn in the order in which they are written.

The whole match expression is rewritten to the right-hand side of the first case where the pattern matches the selector e.
Evaluating Match Expressions: Example

```scala
1 def fact2(n: Int): Int = n match {
2   case 0 => 1
3   case _ => n * fact2(n - 1)
4 }
```

`fact2(1)`

→ `1 match {case 0 => 1 case _ => 1 * fact2(1 - 1)}`
→ `1 * fact2(1 - 1)`
→ `1 * fact2(0)`
→ `1 * 0 match {case 0 => 1 case _ => 0 * fact2(0 - 1)}`
→ `1 * 1`
→ `1`
Forms of Recursion

- **Linear recursion**: one recursive call per branch
- **Tail recursion**: one recursive call per branch being the outermost operation
- **Nested recursion**: recursive calls include recursive calls as arguments
- **Tree-like recursion**: more than one recursive call per branch (also known as cascade recursion)
- **Mutual recursion**: two or more functions call each other
Linear Recursion Example

Functions $\text{fact} - \text{fact4}$ are linear.

Calculating n^k:

```scala
def power(n: Int, k: Int): Int = k match {
  case 0 => 1
  case _ if k > 0 => n * power(n, k-1)
}
```

Note: in branch $k > 0$ the operator $*$ is outer-most operation, not power.
Tail Recursion Example

Greatest common divisor:

```scala
def gcd(n: Int, m: Int): Int = n match {
  case 0 => m
  case _ if m >= n => gcd(m - n, n)
  case _ => gcd(n - m, m)
}
```
Nested Recursion Example

McCarthy 91 function:

```scala
def fun91(n: Int): Int =
  if (n > 100) n - 10
  else fun91(fun91(n + 11))
```

Quiz: Why is it called 91 function?
Tree-like Recursion Example

Binomial coefficients defined recursively:

\[
\binom{n}{0} = \binom{n}{n} = 1 \quad \text{if } n \geq 0
\]

\[
\binom{n}{k} = \binom{n-1}{k-1} + \binom{n-1}{k} \quad \text{if } 1 \leq k \leq n - 1
\]

In Scala:

```scala
1 def binom(n: Int, k: Int): Int =
2   if (k==0 || n==k) 1
3   else binom(n-1,k-1) + binom(n-1,k)
```
Mutual Recursion Example

```scala
def isEven(n: Int): Boolean = n match {
  case 0 => true
  case _ if n > 0 => isOdd(n-1)
}

def isOdd(n: Int): Boolean = n match {
  case 0 => false
  case _ if n > 0 => isEven(n-1)
}
```
Higher-Order Functions

... are functions that receive functions as input or return a function as output

Any FP language treats functions as first-class values. Therefore, functions can be passed as parameters or being returned.
We know them from mathematics!

For example, differentiation takes a function $f(x) = x^2$ and returns another function $f'(x) = x$.

In FP they provide a flexible way to

- compose programs (combine several functions into a new one)
- to modify programs (take a function and produce another one)

In ordinary programming languages these combinators are syntactically fixed.
Take the sum of integers between \(a \) and \(b \):

```scala
1 def sumInts(a: Int, b: Int): Int =
2   if (a > b) 0
3   else a + sumInts(a + 1, b)
```

Take the sum of the cubes of all the integers between \(a \) and \(b \):

```scala
1 def cube(x: Int): Int = x * x * x
2
3 def sumCubes(a: Int, b: Int): Int =
4   if (a > b) 0
5   else cube(a) + sumCubes(a + 1, b)
```
Example (cont.)

Take the sum of the factorials of all the integers between a and b:

```scala
1 def sumFactorials(a: Int, b: Int): Int =
2   if (a > b) 0
3   else fact(a) + sumFactorials(a + 1, b)
```

These are special cases of

$$\sum_{i=a}^{b} f(i)$$

for different values of f.

Can we factor out the common pattern?
A Higher-Order Sum Function

```scala
def sum(f: Int => Int, a: Int, b: Int): Int = 
  if (a > b) 0 
  else f(a) + sum(f, a + 1, b)
```

Now, we can specialize this function into

```scala
def sumInts(a: Int, b: Int) = sum(id, a, b)
def sumCubes(a: Int, b: Int) = sum(cube, a, b)
def sumFactorials(a: Int, b: Int) = sum(fact, a, b)
```

where

```scala
def id(x: Int): Int = x
```

In Scala, we write function types `TypeA => TypeB`.
Anonymous Functions

If functions are only used as parameters, we often do not want to define them, like e.g., \texttt{id} and \texttt{cube}.

An anonymous function definition returns a function without the need to define it with a name.

Example: an anonymous cube function:

\begin{verbatim}
(x: Int) => x * x * x
\end{verbatim}

Now, we can specialize the two sum functions

\begin{verbatim}
1 def sumInts(a: Int, b: Int) = sum((x: Int) => x, a, b)
2 def sumCubes(a: Int, b: Int) = sum((x: Int) => x * x * x, a, b)
\end{verbatim}

without auxiliary function definitions.
Function Composition

An important higher-order function is function composition $f \circ g$.

$$(f \circ g)(x) = f(g(x))$$

In Scala, this operator is predefined and called `compose`

Example: combining two anonymous squaring functions

```scala
1  def sumPowerOfFour(a: Int, b: Int) =
2  sum(((x: Int) => x * x) compose ((x: Int) => x * x ), a, b)
```
Lists

Lists are an important inductive data structure in functional programming.

In contrast to arrays, lists are immutable (i.e., elements of a list cannot be changed).

Like arrays, lists are homogenous: the elements of a list must all have the same type.

Examples:

```scala
1  val fruits = List("apples", "oranges", "pears")
2  val nums   = List(1, 2, 3)
3  val diagM  = List(List(1,0,0), List(0,1,0), List(0,0,1))
4  val empty = List()
```
Inductive Definition

Lists are inductively defined. All lists are constructed from

- the empty list `Nil`, and
- the construction operation `::` (named cons):
 \[x :: xs \] defines a new list with the first element (called the head) \(x \), followed by the elements of \(xs \) (called the tail).

Examples:

```scala
1  val fruitsCons = "apples" :: ("oranges" :: ("pears" :: Nil))
2  val numsCons  = 1 :: (2 :: (3 :: Nil))
3  val emptyCons = Nil
```

Scala convention: operators ending in `:` associate to the right. Hence, we can omit the parantheses:

```scala
1  val fruitsCons = "apples" :: "oranges" :: "pears" :: Nil
2  val numsCons  = 1 :: 2 :: 3 :: Nil
```
Essential List Operations

All functions on lists can be expressed in terms of three operations:
- head: first element of list (exception if list is empty)
- tail: a list without its head
- isEmpty

In Scala they are defined as methods of objects of type list:

```scala
1 empty.isEmpty == true
2 fruits.head == "apples"
3 fruits.tail == List("oranges", "pears")
```

Alternatively, list patterns can be used to decompose a list!
List Patterns

- **Nil**: matches empty list
- **x::xs**: matches non-empty list and binds identifiers `x` and `xs` to head and tail.
- **List(e1,...,en)**: same as `e1::...::en::Nil`

Also more complex patterns can be constructed:
- `1::2::xs`: a list starting with 1 and 2
- `x::Nil`: a list of length one
- `List(x)::xs`: a list of lists starting with a list of length one
def member(e: Int, l: List[Int]) : Boolean = l match {
 case Nil => false
 case e::xs => true
 case _::xs => member(e,xs)
}

Interesting patterns:

- Stable identifier pattern `e` ensures that first element matches parameter e.
- Note the use of the don’t care pattern, since no variable binding to first element is needed!
Appending Two Lists

```scala
def append(as: List[Int], bs: List[Int]): List[Int] = as match {
  case Nil => bs
  case x::xs => x::append(xs, bs)
}
```

It is not very useful to restrict this function to a certain type!
We may use a type variable T to generalize the function:

```scala
1 def appendG[T](as: List[T], bs: List[T]): List[T] = as match {
2   case Nil    => bs
3   case x::xs => x::appendG(xs, bs)
4 }
```
Length of a List

```scala
def length[T](as: List[T]): Int = as match {
  case Nil     => 0
  case _ :: xs => 1 + length(xs)
}
```
def isort(as: List[Int]): List[Int] = as match {
 case Nil => Nil
 case x::xs => insert(x, isort(xs))
}

def insert(e: Int, as: List[Int]): List[Int] = as match {
 case Nil => List(e)
 case x::_ if (e <= x) => e::as
 case x::xs => x::insert(e,xs)
}

Can we write a generic insertion sort?
Generic Insertion Sort

We pass the order relation as an additional parameter:

```scala
def isortG[T](leq: (T,T) => Boolean, as: List[T]): List[T] = 
  as match {
    case Nil => Nil
    case x::xs => insertG(leq ,x, isortG(leq,xs))
  }

def insertG[T](leq:(T,T) => Boolean, e: T, as: List[T]): List[T] = 
  as match {
    case Nil => List(e)
    case x::_ if leq(e,x) => e::as
    case x::xs => x::insertG(leq,e,xs)
  }

isortG((x: Int, y: Int) => x <= y, List(3,1,4,2)) returns List(1, 2, 3, 4)
isortG((x: Int, y: Int) => x > y, List(3,1,4,2)) returns List(4, 3, 2, 1)
```
Generic Insertion Sort with Local Function

We may hide the insert function in a block expression:

```scala
def isortB[T](leq: (T,T) => Boolean, as: List[T]): List[T] = {
  def insert(e: T, as: List[T]): List[T] = as match {
    case Nil => List(e)
    case x::_ if leq(e,x) => e::as
    case x::xs => x::insert(e,xs)
  }

  as match {
    case Nil => Nil
    case x::xs => insert(x, isortB(leq,xs))
  }
}
```

Here, the order relation \(\leq \) is known inside the block.
Simplified Generic Insertion Sort

We can even hide all recursive definitions inside the block:

```scala
def isortC[T](leq: (T,T) => Boolean, as: List[T]): List[T] = {
  def insert(e: T, as: List[T]): List[T] = as match {
    case Nil => List(e)
    case x::_ if leq(e,x) => e::as
    case x::xs => x::insert(e,xs)
  }
  def isort(as: List[T]): List[T] = as match {
    case Nil => Nil
    case x::xs => insert(x, isort(xs))
  }
  isort(as)
}
```

Now, both inner recursive functions do not need `leq` as a parameter.