Recap – Situation Calculus

- Situation Calculus
 - allows for reasoning about change and actions
 - a dialect of the second-order logic
 - uses the concept of situations
 - allows for proving properties
 - solves the frame problem

- Basic Action Theory
 - implements the situation calculus
 - Foundation Axioms & Action Precondition & Successor State Axioms & Unique Name Assumption

Golog

- Situation Calculus is yet only a theoretical construct
- Golog (aGol for Logic) is based on the Situation Calculus
- it is a program language for dynamic systems
- it allows a balance between reasoning/planning and imperative programming (i.e., planning is expensive)
- it allows complex actions (so for only primitive actions)
- Golog can be implemented using logic programming
Golog
- A Golog program δ is based on SC
- It uses the macro $Do(\delta, s, s')$
- $Do(\delta, s, s')$ will be macro-expanded to a SC formula
- The formula Do states that s' is reachable from s by executing the program δ
- The syntax supports primitive and complex actions

Golog Syntax (1)
- Primitive Action: α
 - Has a precondition $Poss$ and the effects are modeled in the successor state axioms
 - $walk(R, L)$
- Test action: ϕ?
 - Tests if ϕ holds in a situation, does not change the situation
 - $(\neg(\exists x, y).nextTo(x, y))?$
- Sequence: $\delta_1; \delta_2$
 - Executes δ_1 and δ_2 one after each other
 - $walk(R, L); pickup(R, K)$

Golog Syntax (2)
- Non-deterministic Choice of Actions: $\delta_1 | \delta_2$
 - (Randomly) action δ_1 or δ_2 will be executed
 - $walk(R, A) | walk(R, B)$
- Non-deterministic Choice of Arguments: $(\pi x).\delta(x)$
 - (Randomly) choose an argument x for the action δ
 - $(\pi x).pickup(R, x)$
- Non-deterministic Iteration: δ^*
 - Executes δ for a not defined number of times ($n \geq 0$)
 - $(pickup(R, L); drop(R, L))^*$

Golog Syntax (3)
- Conditionals: if Φ then δ_1 else δ_2 endif
 - Based on the truth value of Φ either δ_1 or δ_2 is executed
 - if $low_battery(R)$ then $recharge(R)$ else $walk(R, Party)$ endif
- Loops: while Φ do δ endwhile
 - As long as Φ is true repeat action δ
 - while $\neg low_battery(R)$ do $pickup(R, L); drop(R, L)$ endwhile
- Procedures: proc P(x) δ endproc
 - Defines the procedure P with the parameters x
 - proc d(n) (n=0)? | d(n-1) endproc
On the Semantics of Golog

Golog programs are **macro-expanded** to Situation Calculus formulas using the macro $Do(\delta, s, s')$

- **what is the meaning of Golog and a program δ**
 - $D(\delta, s, s')$, $Do(s, s')$
 - the Basic Action Theory entails if a given program δ lead to the situation s starting from S_0

- **drawback**: the macros are **less expressive**
- a program trace can be obtained by a constructive proof of the above sentence
- **some properties are provable**: e.g., termination

Semantics of Golog Parts (1)

- **Primitive Action: a**
 - $Do(a, s, s') = \text{Poss}(a[s], s) \land s' = do(a[s], s)$
 - $a[s]$ denotes restoring of all situation arguments in the functional fluents mentioned in a
 - $a = \text{goTo(location(Sam))}$, $a[s] = \text{goTo(location(Sam, s))}$

- **Test action: ϕ**
 - $Do(\phi?, s, s') = \phi[s] \land s = s'$
 - $\phi[s]$ denotes restoring of all situation arguments in the fluents mentioned in ϕ
 - $\phi(\forall x).\text{onTable}(x)$, $\phi[s](\forall x).\text{onTable}(x, s)$

- **Sequence: $\delta_1; \delta_2$**
 - $Do(\delta_1; \delta_2, s, s') = (\exists s''). Do(\delta_1, s, s'') \land Do(\delta_2, s'', s')$

Semantics of Golog Parts (2)

- **Non-deterministic Choice of Actions: $\delta_1|\delta_2$**
 - $Do(\delta_1|\delta_2, s, s') = Do(\delta_1, s, s') \lor Do(\delta_2, s, s')$

- **Non-deterministic Choice of Arguments: $(\forall x)\delta(x)$**
 - $Do((\forall x)\delta(x), s, s') = (\exists x) Do(\delta(x), s, s')$

- **Non-deterministic Iteration: δ^***
 - $Do(\delta^*, s, s') = (\forall P). (\exists s_0. P(s_0, s_0) \land s_0, s_0, s_0 \models P(s_0, s_0) \land Do(\delta^*, s_0, s_0) \rightarrow P(s, s))$

Semantics of Golog Parts (3)

- **Conditionals: if ϕ then δ_1 else δ_2 endif**
 - expressed by the previous constructs
 - $Do(\text{if } \phi \text{ then } \delta_1 \text{ else } \delta_2 \text{ endif}) = Do(\delta_1 \text{ if } \phi \land \neg \phi \land \delta_2)$

- **Loops: while ϕ do δ endwhile**
 - expressed by the previous constructs
 - $Do(\text{while } \phi \text{ do } \delta \text{ endwhile}, s, s') = Do((\phi? \land \neg \phi? \land \phi?) \land Do(\delta, s, s') | s, s')$
Semantics of Golog Parts (4)

- A Program:
 \[\text{proc } P_1(x_1) \delta_1 \text{ endproc}; \ldots; \text{proc } P_n(x_n) \delta_n \text{ endproc}; \delta_0 \]
 a sequence of procedure declarations plus a main program \(\delta_0 \)

- we define \(\text{Do}(P(t_1, \ldots, t_n), s, s') = P(t_1[s], \ldots, t_n[s], s, s') \)
 defines a procedure call
 \(t_i[s] \) denotes the evaluation of \(t_i \) in situation \(s \) before passing to \(P \)
 represents a call by value

\[\begin{align*}
 \text{Do}(& \text{proc } P_1(x_1) \delta_1 \text{ endproc}; \ldots; \text{proc } P_n(x_n) \delta_n \text{ endproc}; \delta_0, S_0, s, s') \\
 = & (\forall P_1, \ldots, P_n) \left(\bigwedge (\forall x_i, s, s'), \text{Do}(P_i(x_i, s), s, s') \right) \\
 & \rightarrow \text{Do}(\delta_0, s, s')
\end{align*} \]

A Simple Example

- \(\delta = \{ x \} \{ A(x) ; ? \} ; \{ B(x) \} \{ C(x) ; ? \} \)\n- \(\text{Do}(\delta, S_0, s) ? \)

\[\begin{align*}
 (\exists x). \left((\exists s_1). \text{Poss}(A(x), S_0) \land s_1 = \text{do}(A(x), S_0) \land (\exists s_2). s_1 = s_2 \land [\text{Poss}(B(x), s_2) \land s = \text{do}(B(x), s_2) \lor (\exists s_3). \text{Poss}(C(x), s_2) \land s_2 = s_3 \land \text{do}(C(x), s_3) \land s = \text{do}(C(x), s_3)] \right)
\end{align*} \]

- two possible traces: \(\text{do}(B(x), \text{do}(A(x), S_0)) \land \text{do}(C(x), \text{do}(A(x), S_0)) \) assuming \(? \) and \(?' \) holds in the related situations

Situation Calculus vs. Golog Programs

- Situation Calculus and Golog Programs are related
 macro expansion uses the basic action theory (e.g., preconditions and successor state axioms)
- Golog is not a classical program language
 there are no side effects or states
- program traces come from theorem proving
 axioms \(\{ (\exists s). \text{Do}(\delta, s, s) \} \)
 allows for proving of properties of the program

Executing a Golog Program
Planning versus Programming

```
proc toh()
  while ¬solved do
    (πo) (πd)
    move(o,d)
  endwhile
endproc
Do(toh(),s0,s)
```

```
proc toh(n,o,d,h)
  toh(n-1,o,h,d)
  move(o,d)
  toh(n-1,h,d,o)
endproc
Do(toh(3,a,b,c),s0,s)
```

The “famous” Elevator Example

- **Elevator**
 - several floors
 - each floor has a door
 - each floor has a call button

- **Possible Actions**
 - up(n)
 - down(n)
 - trunoff(n)
 - open
 - close

- **Task**
 - serve all requests

Elevator Part 1

- **Fluents**
 - currentFloor(n,s), elevator is on floor n
 - on(n,s), call button is on at floor n

- **Primitive Action Preconditions**
 - Poss(up(n),s) ≡ ∃m.currentFloor(m,s) ∧ m<n
 - Poss(down(n),s) ≡ ∃m.currentFloor(m,s) ∧ m>n
 - Poss(open,s) = true
 - Poss(close,s) = true
 - Poss(trunoff(n),s) = on(n,s)

Elevator Part 2

- **Successor State Axioms**
 - currentFloor(m,do(a,s)) = a=up(m) ∨ a=down(m) ∨ currentFloor(m,s) ∧ ¬(∃n).[(a=up(n) ∨ a=down(n)) ∧ m≠n]
 - on(m,do(a,s)) = on(m,s) ∧ a=trunoff(m)

- **Initial Situation**
 - currentFloor(4,S₀), on(3,S₀), on(5,S₀)
Elevator Part 3

• Golog Procedures

 • proc serve(n)
 goFloor(n); turnoff(n); open; close endproc

 • proc goFloor(n)
 (currentFloor(n))? up(n); down(n) endproc

 • proc serveAFloor
 if serve(n) endproc

 • proc control
 [while (3) ? on(n) do serveAFloor endwhile]; park endproc

 • proc park
 if currentFloor(0) then open else down(0); open endproc

Elevator Part 4

• Running the Program

 • prove the following entailment: Axioms \(\exists s. Do(\exists S_0. s) \)

 • action sequence: down(3), turnoff(3), open, close, up(5), turnoff(5), open

 • there are multiple solutions

Golog - Summary

• Golog is logic program language
• Golog is based on Situation Calculus axioms
• its interpreter is a general purpose theorem prover
• Golog programs are executed for their side effects
• Golog programs are executed off-line
Prolog as Implementation of Logic

- Prolog is a logic program language
- Prolog allows for declarative programming (i.e., concentrates on the problem formulation)
- Prolog can be used to implement a logical theory
- If some properties hold there is mapping between Prolog and the logical theory behind
 - Use a definitional theory
 - Use a proper Prolog interpreter
 - Theorem of Clark

Definitional Theory

- Definition axioms have the following form
 \((\forall x_1, \ldots, x_n). P(x_1, \ldots, x_n) \equiv \Phi\), \(P\) is a predicate other the equality, \(\Phi\) is a FOL sentence can also be written as \((\forall x_1, \ldots, x_n). \Phi \rightarrow P(x_1, \ldots, x_n)\)
- A set of definition axioms form a definitional theory
- An atom \(A\) is a formula of the form \(P(x_1, \ldots, x_n)\)
- A literal \(L\) is an atom or its negation
- A clause \(C\) has the form \(L_1 \land \ldots \land L_m \rightarrow A\), \(m \geq 0\)

Prolog Interpreter

- Prolog represents a clause as \(A \leftarrow L_1, \ldots, L_m\).
- Prolog represents a goal as \(L_1, \ldots, L_k\).
- A proper Prolog interpreter has the following properties
 - It interprets the negation not \(A\) as negation as failure
 - It does so only if \(A\) is a ground literal
 - If \(A\) is not ground the interpreter suspend the evaluation until \(A\) become ground or it may abort the computation
- The Clark’s Theorem guarantees the right “return” value of a Prolog program

A Golog Interpreter

- It is based on Prolog for theorem proving
- The Situation Calculus is based on second-order logic
- Prolog does not support the whole power of second-order logic
- The interpreter use some assumptions
 - There are only relational fluents
 - The initial database is closed
 - Special assumptions for of action preconditions and relational fluents
Clark’s Theorem

- Suppose T is a set of definitions for every predicate except equality
- If the following properties hold:
 - For two distinct function symbols: $f(x) \neq g(y)$
 - For a function symbol: $f(x_1, \ldots, x_n) = f(y_1, \ldots, y_n) \rightarrow x_1 = y_1 \land \ldots \land x_n = y_n$
 - For every term $t[x]$ that mentions the variable x $t[x] \neq x$

 Then when a proper Prolog interpreter succeeds on a goal G then $T \vDash (\forall)G$.

 Then when a proper Prolog interpreter fails on a goal G then $T \nvDash (\forall)G$.

Negation as Failure

- Prolog implements negation as “negation as failure.”
- For $\neg p$ Prolog tries to prove p if p can be proved return false otherwise return true.
- For $P(x) = x = A, Q(x) = x = B$
 - $\neg P(B) \land Q(B) \Rightarrow YES$
 - $p(a), q(b)$.
 - $\neg p(x), q(X)$
 - $q(X), \neg p(X)$
- Prolog usually does no NAF on non-ground atoms.

Lloyd-Topor Transformation

- Problem:
 - $(\forall x,y). subset(x,y)$
 - $(\forall x,y). member(z,x) \rightarrow member(z,y)$
 - $(\forall x,y). (\forall z)[member(z,x) \rightarrow member(z,y)] \rightarrow subset(x,y)$
- The LT Transformation transforms a sentence $W \rightarrow A$ in a clause suitable for Prolog.
- There are 12 (syntactic) rules (e.g., replace $\forall \phi(W, \forall W) \rightarrow A$ with $\forall \phi(W, \forall W) \land \theta \rightarrow A$, $\forall \phi(W, \forall W) \land \theta \rightarrow A$.
- $\neg p(x,y) \rightarrow subset(x,y)$.
 - $member(z,x) \land \neg member(z,y) \rightarrow p(x,y)$

Closed Initial Database

- An initial database $D_{\theta_{1}}$ is closed iff
 - For every relation fluent F there is only one sentence in the form $F(x_1, \ldots, x_n, S_0) = \phi(x_1, \ldots, x_n, S_0)$
 - For every non-fluent predicate P there is only one sentence in the form $P(x_1, \ldots, x_n) = \phi(x_1, \ldots, x_n)$ where ϕ is situation independent.
 - For two distinct function symbols: $f(x) = g(y)$
 - For a function symbol: $f(x_1, \ldots, x_n) = f(y_1, \ldots, y_n) \rightarrow x_1 = y_1 \land \ldots \land x_n = y_n$
 - For every term $t[x]$ that mentions the variable x $t[x] \neq x$ (objects)
 - For every term $t[a]$ that mentions the variable a $t[a] \neq a$ (actions)

- A restriction on the expressiveness, not allowed:
 - $F(A, S_0) \lor F(B, S_0)$
 - $(\exists x) F(x, S_0)$
 - $\text{murderer} (\text{Caesar}) = \text{Brutus}$
Implementation Theorem

- Let \(D \) be a basic action theory and \(P \) a Prolog program obtained by Lloyd-Topor rules
 - for each non-fluent predicate of \(D_{\text{nc}} \) of form
 \[P(x_1, \ldots, x_n) \iff \text{\(P(x_1, \ldots, x_n) \rightarrow P(x_1, \ldots, x_n) \)}} \]
 - for each relational fluent predicate of \(D_{\text{rf}} \) of form
 \[F(x_1, \ldots, x_n, S_0) \iff \text{\(F(x_1, \ldots, x_n, S_0) \rightarrow F(x_1, \ldots, x_n, S_0) \)}} \]
 - for each action precondition axiom of \(D_{\text{ap}} \) of form
 \[\text{Poss}(A(x_1, \ldots, x_n, s)) \iff \text{\(\text{Poss}(A(x_1, \ldots, x_n, s)) \rightarrow \text{Poss}(A(x_1, \ldots, x_n, s)) \)}} \]
 - for each successor state axiom of \(D_{\text{ss}} \) of form
 \[F(x_1, \ldots, x_n, \text{do}(a, s)) \iff \text{\(F(x_1, \ldots, x_n, \text{do}(a, s)) \rightarrow F(x_1, \ldots, x_n, \text{do}(a, s)) \)}} \]

- then \(P \) provides a correct Prolog implementation of \(D \) (assuming a closed database)

Golog Summary

- Golog is a program language for dynamic systems
- Golog used the principles of the Situation Calculus
- execution of a Golog program is related to theorem proving
- there exists Golog interpreter using logic programming
- if some assumptions hold the interpreter correctly executes the program
- some limitations for real world systems

Questions?