Foundations of Data and Knowledge-based Systems

ATMS – Assumption-based Truth Maintenance Systems

Franz Wotawa

Technische Universität Graz
IICM – Software Technology
Email: wotawa@ist.tugraz.at
Introduction

- Example
- Basic Definitions
- Algorithm
- Properties
- Extensions
- Bibliography
Example (I)

Propositional Theory Th

\[
\begin{align*}
 a, & \quad c, \\
 a \to b, & \quad c \to d, \\
 a \land c \to e, & \quad b \land d \to \bot.
\end{align*}
\]

\bot, \to, \land designate falsity, implication, conjunction

Theory Th is inconsistent!

\[
\begin{align*}
 a, a \to b & \models b \\
 c, c \to d & \models d \\
 a, c, a \land c \to e & \models e \\
 b, d, b \land d \to \bot & \models \bot
\end{align*}
\]

From \bot follows everything!
Example (II)

Aim: Eliminate inconsistency!

Default Logic (Only normal defaults):

\[
\begin{align*}
\text{true} & \quad A, \\
A & \rightarrow b, \\
A \land C & \rightarrow e, \\
C & \rightarrow d, \\
b \land d & \rightarrow \bot.
\end{align*}
\]

Compute Extensions

(= Consistent subsets of a theory)

\{A, b\} and \{C, d\}
Example (III)

Using the ATMS

ATMS Node: \(\langle p, \{CSD_1, \ldots, CSD_n\}\rangle\)

\(CSD_i\ldots\) Consistent set of defaults (ATMS assumptions)

1. \(A\) \hspace{1cm} \(\langle A, \{\{A\}\}\rangle\)
2. \(C\) \hspace{1cm} \(\langle C, \{\{C\}\}\rangle\)
3. \(A \rightarrow b\) \hspace{1cm} \(\langle b, \{\{A\}\}\rangle\)
4. \(C \rightarrow d\) \hspace{1cm} \(\langle d, \{\{C\}\}\rangle\)
5. \(A \land C \rightarrow e\) \hspace{1cm} \(\langle e, \{\{A, C\}\}\rangle\)
6. \(b \land d \rightarrow \bot\) \hspace{1cm} \(\langle \bot, \{\{A, C\}\}\rangle\)
\hspace{1cm} \(\langle e, \{\}\rangle\)

\(e\) is no longer supported! \(b\) is supported by \(A\) and \(d\) is supported by \(C\).
Algorithm

1. Let Th be a set of facts and rules.

2. If Th is consistent exit the algorithm.

3. Otherwise, select a fact or rule r from Th.

4. Remove r from Th, i.e., $Th = Th \setminus \{r\}$, and goto step 2.

- Makes no differences between facts and rules
- Makes no differences between different facts.
- Not appropriate in some (important) cases.
Problem-solver Architecture

Problem Solver domain knowledge, inference procedures, sends inferences to ATMS.

ATMS determine what data are believed and disbelieved, use assumptions and justifications

Example:

Multiplier \(m_1 \) with behavior \(\neg ab(m_1) \to out(m_1) = in_1(m_1) \cdot in_2(m_1) \)

Problem solver knows that \(in_1(m_1) = 3, \) \(in_2(m_1) = 3, \) and the behavior. Under the assumption that \(\neg ab(m_1) \) the problem solver can conclude \(out(m_1) = 6. \)

Problem solver sends justification to ATMS:

\[
\Gamma(in_1(m_1) = 3) \land \Gamma(in_2(m_1) = 2) \land \\
\Gamma(\neg ab(m_1)) \to \Gamma(out(m_1) = 6)
\]

The data \(\Gamma(\neg ab(m_1)) \) is an assumption.
Behavior and structure \(mult(C) \land \neg ab(C) \rightarrow out(C) = in_1(C) \cdot in_2(C), plus(C) \land \neg ab(C) \rightarrow out(C) = in_1(C) + in_2(C), mult(M1), mult(M2), mult(M3), plus(A1), plus(A2), in_1(M1) = a, in_2(M1) = c, \ldots \)

Assumptions \(\neg ab(M1), \neg ab(M2), \neg ab(M3), \neg ab(A1), \neg ab(A2) \) denoted by \(NAB(M1), NAB(M2), NAB(M3), NAB(A1), NAB(A2) \).

Justifications \(NAB(M1), in_1(M1) = 2, in_2(M1) = 3 \rightarrow out(M1) = 6, NAB(M1), out(M1) = 6, in_1(M1) = 2 \rightarrow in_2(M1) = 3, \ldots \)
Justifications send to the ATMS (only partially for forward propagation)
Definitions (I)

Node An ATMS node corresponds to a problem-solver datum.

Assumption A special node.

Justification Describes how nodes are derived from other nodes.

\[X_1, \ldots, X_n \Rightarrow X_{n+1} \]

where \(X_i \) are nodes and \(X_1, \ldots, X_n \) is the antecedence and \(X_{n+1} \) the consequent.

Justifications are Horn Clauses!

Environment Is a set of assumptions.

Context Is formed by a consistent environment and all nodes derived from it.

Characterizing environment Minimal consistent environment from which a context can be derived.
Definitions (II)

- A node n holds in an environment E iff n can be derived from E and the current theory Th, i.e., $E \cup T \models n$.

- An environment E is inconsistent if the false node (\bot) can be derived, i.e., $E \cup Th \models \bot$.

- Every node n has assigned labels. A label (for n) is a set of consistent environments from which n can be derived.

- **Task of the ATMS**: Compute node labels.
Definitions (III) - Label Properties

Consistent A label L for node n is consistent if all of its environments are consistent.

Sound A label L for node n is sound iff n is derivable from every environment E from L.

$$E \cup Th \models n$$

Complete A label L for node n is complete iff every consistent environment $E \not\in L$ for which $E \cup Th \models n$ is a superset of some $E' \in L$, i.e., $E' \subset E$.

Minimal A label L for node n is minimal iff for every element E of L there exists no subset $E' \subset E$ from which n can be derived $E' \cup Th \models n$.

12
Consequences

- **Task of the ATMS**: Compute minimal, consistent, sound, and complete labels for every node.

- A node n is derivable from an environment E if E is element of the label or E is a superset of any element of the label.

- A node has an empty label iff it is not derivable from a consistent set of assumptions.

- Contexts are determined by node labels.

- ATMS can handle multiple contexts at the same time.
Coffee Machine Example

Model

Request → request
Water → water
Beans → beans
request ∧ water ∧ beans → coffee
coffee → request
coffee → water
coffee → beans
Coffee Machine (II)

Model (cont.)

\[
\begin{align*}
\text{no_coffee} \land \text{request} \land \text{water} & \rightarrow \text{no_beans} \\
\text{no_coffee} \land \text{request} \land \text{beans} & \rightarrow \text{no_water} \\
\text{no_coffee} \land \text{water} \land \text{beans} & \rightarrow \text{no_request} \\
\text{beans} \land \text{no_beans} & \rightarrow \perp \\
\text{request} \land \text{no_request} & \rightarrow \perp \\
\text{water} \land \text{no_water} & \rightarrow \perp \\
\text{coffee} \land \text{no_coffee} & \rightarrow \perp \\
\end{align*}
\]

Observations

\[
\text{no_coffee}
\]
Coffee Machine (III)

water \{\{Water\}\}
beans \{\{Beans\}\}
request \{\{Request\}\}
coffee \{}
no_coffee \{\{\}\}\}
nobean s \{\{Water, Request\}\}
no_water \{\{Beans, Request\}\}
no_request \{\{Water, Beans\}\}
⊥ \{\{Water, Beans, Request\}\}
Coffee Machine (IV)

Add the fact `water` to the ATMS

```
| water       | {{}} |
| beans       | {{Beans}} |
| request     | {{Request}} |
| coffee      | {} |
| no_coffee   | {{}} |
| no_beans    | {{Request}} |
| no_water    | {} |
| no_request  | {{Beans}} |
| ⊥           | {{Beans, Request}} |
```

Only missing Beans or Request remains as source of the misbehavior, i.e., no_coffee.

What means no_beans `{{Request}}`? Under the assumption that Request is true no_beans must be valid.
Robotics

- ATMS for representing the state of the world.

- Different kind of ‘Facts’: (1) Real facts, (2) Currently valid assumptions

 The sun and moon exists vs. a specific door is open.

 Corresponds to probability of change.

- Example: Passing a door

 \[
 \begin{align*}
 \text{Open} & \rightarrow \text{open} \\
 \text{open} & \rightarrow \text{can_pass} \\
 \text{Closed} & \rightarrow \text{closed} \\
 \text{closed} & \rightarrow \text{can_not_pass} \\
 \text{can_pass} & \land \text{can_not_pass} \rightarrow \bot \\
 \text{open} & \land \text{closed} \rightarrow \bot
 \end{align*}
 \]
Basic Data Structure

Node

\[\gamma_{\text{datum}} : \langle \text{datum, label, justifications} \rangle \]

where \text{datum} is send by the problem solver.

- Premise, e.g., \langle p, \{\{}\}, \{()\} \rangle
- Assumption, e.g., \langle A, \{\{A\}\}, \{(A)\} \rangle
- Assumed nodes, e.g., \langle a, \{\{A\}\}, \{(A)\} \rangle
- Derived nodes, e.g., \langle \text{can pass}, \{\{Open\}\}, \{(open)\} \rangle
- Falsity, \langle \bot, \ldots, \ldots \rangle. Inconsistent environments are called NOGOODS.

Logical interpretations of

\[\langle n, \{\{A_1, \ldots, A_n\}, \{B_1, \ldots, B_m\}, \ldots\}, \{(x_1, \ldots, x_k), (y_1, \ldots, y_j), \ldots\} \rangle \]

\[(A_1 \land \ldots \land A_n) \lor (B_1 \land \ldots \land B_m) \lor \ldots \rightarrow n \]
\[(x_1 \land \ldots \land x_k) \lor (y_1 \land \ldots \land y_j) \lor \ldots \rightarrow n \]
ATMS Algorithm (I)

- Central task is do maintain node labels

- Only necessary when justification added

- \(J \) is supplied \(\Rightarrow \) \text{PROPAGATE}(J, \Phi, \{\{\}\}) \) is called. \(\Phi \) indicates the absence of an optional antecedence node.

- Only incremental changes are propagated through the ATMS
ATMS Algorithm (II)

ALGORITHM PROPAGATE \((x_1, \ldots, x_n \rightarrow x_{n+1}), a, I\)

1. [Compute the incremental update]
 \(L = \text{WEAVE}(a, I, \{x_1, \ldots, x_n\})\). If \(L\) is empty, return.

2. [Update label and recur] UPDATE\((L, x_{n+1})\).

ALGORITHM UPDATE\((L, n)\)

1. [Detect nogoods] If \(n = \perp\) then call NOGOOD\((E)\) on each \(E \in L\) and return \(\{\}\).

2. [Update \(n\)'s label ensuring minimality]
 (a) Delete every environment from \(L\) which is a superset of some label environment of \(n\).

 (b) Delete every environment from the label of \(n\) which is a superset of some element of \(L\).

 (c) Add every remaining environment of \(L\) to the label of \(n\).

3. [Propagate the incremental change to \(n\)'s label to its consequences] For every justification \(J\) in which \(n\) is mentioned as an antecedent call PROPAGATE\((J, n, L)\).
ATMS Algorithm (III)

ALGORITHM \texttt{WEAVE}(a, I, X)

1. [Termination condition] If X is empty, return I.

2. [Iterate over the antecedent nodes] Let h be the first node of the list X and R the rest.

3. [Avoid computing the full label] If $h = a$, return $\texttt{WEAVE}(\emptyset, I, R)$.

4. [Incrementally construct the incremental label] Let I' be the set of all environments formed by computing the union of an environment of I and an environment of h's label.

5. [Ensure that I' is minimal and contains no known inconsistency] Remove from I' all duplicates, nogoods, as well as any environment subsumed by any other.

6. Return $\texttt{WEAVE}(a, I', R)$.

ALGORITHM \texttt{NOGOOD}(E)

1. Mark E as nogood.

2. Remove E and any superset from every node label.
Consider the Coffee Machine Example before adding the fact \textit{no_coffee}.

\begin{verbatim}
 water \{\{Water\}\}
 beans \{\{Beans\}\}
 request \{\{Request\}\}
 coffee \{\{Water, Beans, Request\}\}
 no_coffee \{}
 no_beans \{}
 no_water \{}
 no_request \{}
 \bot \{}
\end{verbatim}

And add the fact \textit{no_coffee} by calling \textbf{PROPAGATE}((→ \textit{no_coffee}), \Phi, \{\{\}\}).
Example (cont.)

PROPAGATE((→ no_coffee),Φ,{{}})

\[L = \text{WEAVE}(Φ,{{}},{{}}) = {{}} \]

UPDATE({{{}}},no_coffee)

\[\langle \text{no_coffee},{{}},\ldots \rangle \]

PROPAGATE((coffee ∧ no_coffee → ⊥), no_coffee, {{}})

\[L = \text{WEAVE}(\text{no_coffee},{{}},{\text{coffee, no_coffee}}) \]
\[h = \text{coffee}, R = \{\text{no_coffee}\} \]
\[I' = \{\{\text{Water, Beans, Request}\}\} \]

WEAVE(no_coffee,

\{\{\text{Water, Beans, Request}\}, \{no_coffee\}\})
\[h = \text{no_coffee}, R = \{\} \]

WEAVE(Φ,{{Water, Beans, Request}}, {{}})

\[L = \{\{\text{Water, Beans, Request}\}\} \]

UPDATE({{{Water, Beans, Request}}},⊥)

NOGOOD({{Water, Beans, Request}}) (*)

Labels at position (*):

water {Water}
beans {Beans}
request {Request}
coffee {}
no_coffee {}
no_beans {}
no_water {}
no_request {}
⊥ {Water, Beans, Request}
Some other Examples

- Multiple environments

\[
\begin{align*}
A & \rightarrow a & B & \rightarrow b \\
a & \rightarrow c & b & \rightarrow c \\
c, d & \rightarrow \bot & d & \\
\end{align*}
\]

- Multiple environments II

\[
\begin{align*}
A & \rightarrow a & B & \rightarrow b \\
C & \rightarrow c & D & \rightarrow d \\
a, b & \rightarrow e & a, c & \rightarrow e \\
a, d & \rightarrow e & b, c & \rightarrow e \\
b, d & \rightarrow e & c, d & \rightarrow e \\
e, f & \rightarrow \bot & f & \\
\end{align*}
\]
Properties of ATMS

- If there are \(n \) assumptions, then there are potentially \(2^n \) contexts.

- There are \(\binom{n}{k} \) environments having \(k \) assumptions.

- Label update for the ATMS is NP-complete.

The prove is done by (1) showing that the ATMS is in NP, and (2) find a polynomial reduction from a known NP-hard problem.

ad (1): ATMS must be in NP. Given a particular input, we can guess a set \(S \) of propositions of size \(k - 1 \), set them to TRUE and run the Horn clause deduction in linear time to confirm that no contradiction arises.

ad (2) Reduction from the Max Clique Problem (MCP): Given an instance graph \(G \), and an integer \(k \), we want to find out if \(G \) contains as a subgraph a clique of size \(k - 1 \) or more.
Prove (cont.) ATMS is NP-complete

Polynomial reduction from MCP to ATMS: \(n \) be the number of nodes in \(G \). For every \(v \in G \) let \(y_v \) be a proposition saying \(v \) is in the clique. The \(y_v \)'s are in the set of assumptions \(A \) and propositions \(X \). Formula \(F \) is a conjunction of clauses: For every pairs \(\langle v, w \rangle \) of nodes in \(G \) which are not adjacent, add the rule \(y_v \land y_w \rightarrow \bot \). This means \(v \) and \(w \) does not belong to the same clique.

Claim \(G \) contains a clique of size \(k - 1 \) or more iff there exists a set \(S \) of assumptions of size \(k - 1 \), that, if all set to TRUE will leave \(F \) satisfiable.

Prove (Claim):

\((\Rightarrow)\) \(G \) contains a clique \(V \) of size \(k - 1 \). Let all \(y_v \in S \) where \(v \in V \) be TRUE and the rest to FALSE. It is trivial to see that no rule in \(F \) fires. Thus, \(F \) is satisfiable.
Prove (cont. (II)) ATMS is NP-complete

$(\Leftarrow) \ S$ is a set of $k - 1$ assumptions that, if all set to TRUE, will leave F satisfiable. Let V_S be the set of corresponding nodes v, for which $y_v \in S$. We claim that V_S is a clique. Suppose the converse. Then there must be nodes v and w in V_S that are not adjacent in G. But then $y_v \land y_w \rightarrow \bot$ must be in F. Hence, F cannot be satisfiable, contradicting our initial assumptions. ■

The ATMS is NP-complete
Extensions - Hyper-resolution

Problem: Horn clauses cannot encode every propositional formula.

Solution: Extend the ATMS to accept positive clauses of assumptions A_1, \ldots, A_n.

\[
\text{choose } \{A_1, \ldots, A_n\}
\]

represents

\[
A_1 \lor \ldots \lor A_n
\]

All propositional formulas can be expressed using horn clauses and positive clauses.

The basic ATMS algorithm no longer ensures label consistency or completeness!
Hyper-resolution (II)

Example:

\[
\begin{align*}
\text{choose}\{A, B\} \\
A \land C &\rightarrow \bot \\
B \land C &\rightarrow \bot
\end{align*}
\]

The basic ATMS algorithm does not find the nogood \{C\}. It does find \{A, C\} and \{B, C\}!

Hyper-resolution Rule:

\[
\begin{align*}
\text{choose}\{A_1, \ldots, A_n\} \\
\text{nogood } &\alpha_i \text{ where } A_i \in \alpha_i \text{ and } A_j \notin \alpha_i, i \neq j, \text{ for all } 1 \leq i, j \leq n \\
\text{nogood } &\bigcup_i [\alpha_i \setminus \{A_i\}]
\end{align*}
\]

Example (cont.):

\[
\begin{align*}
\text{choose}\{A, B\} \\
\text{nogood}\{A, C\} &\quad A \lor B \\
\text{nogood}\{B, C\} &\quad \neg A \lor \neg C \\
\text{nogood}\{C\} &\quad \neg B \lor \neg C \\
\text{nogood}\{C\} &\quad \neg C
\end{align*}
\]
The NATMS

Negated Assumptions ATMS (NATMS) allows negated assumption in the antecedents of justifications.

- Label consistency
- No hyper-resolution rule needed
- Produces more complete node labels
- Better encoding
- The negation of assumption A is a non-assumption node ($\neg A$).
- Choose can be represented by the NATMS. For example

$$\text{choose}\{A, B, C\}$$

is expressed by

$$\neg A \land \neg B \land \neg C \rightarrow \bot.$$
• Observation: Any negative clause of size k is equivalent to any of k implications.

\[\neg A \lor \neg B \lor \neg C \]

is equivalent to any of:

\[A \land B \rightarrow \neg C \]
\[A \land C \rightarrow \neg B \]
\[B \land C \rightarrow \neg A \]

• NATMS has new inference rule:

\[
\frac{nogood\{A_1, \ldots, A_n, A_{n+1}\}}{A_1, \ldots, A_n \rightarrow \neg A_{n+1}}
\]
NATMS Algorithm (II)

Example: The NATMS discovers new nogood

\[\text{nogood}\{A, B, C\} \]

and produces the following labels:

\[
\langle \neg A, \{\{B, C\}\} \rangle \\
\langle \neg B, \{\{A, C\}\} \rangle \\
\langle \neg C, \{\{A, B\}\} \rangle
\]

representing the following justifications

\[
B \land C \rightarrow \neg A \\
A \land C \rightarrow \neg B \\
A \land B \rightarrow \neg C
\]

Note, it is not necessary to really install the justifications.
The basic algorithm remains except the following.

ALGORITHM NOGOOD’(\(E\))

3. [Handle negated assumptions] For every \(A \in E\) for which \(\neg A\) appears in some justification call \(\text{UPDATE}(\{E \setminus \{A\}\}, \neg A)\).

Example:

\[
\begin{align*}
\text{choose}\{A, B\} \text{ represented by:} \\
\neg A \land \neg B & \rightarrow \bot \\
A \land C & \rightarrow \bot \\
B \land C & \rightarrow \bot
\end{align*}
\]

produces 2 nogoods \(\{A, C\}\) and \(\{B, C\}\).

\[
\begin{align*}
\langle \neg A, \{C\} \rangle \\
\langle \neg B, \{C\} \rangle
\end{align*}
\]

which when propagated to \(\neg A \land \neg B \rightarrow \bot\) produces the nogood \(\{C\}\).
Completeness of the NATMS?

The NATMS algorithm ensures label soundness, consistency, minimality but NOT completeness.

Example:

\[
A \rightarrow b \\
\neg A \rightarrow b
\]

Assuming no other justifications the NAMTS computes the label \(\langle b, \{\{A\}\} \rangle \) which is incomplete! \(b \) holds universally.

In most cases completeness not necessary \(\Rightarrow \) therefore omitted in the algorithm.
Encoding Tricks

- [Negated non-assumptions] For every negated non-assumption node n appearing in the antecedents of a justification define a new Assumption A and add two justifications:

$$A \rightarrow n$$
$$\neg A \rightarrow \neg n$$

Example:

$$\neg a \land B \rightarrow c$$
$$a \land D \rightarrow \bot$$

The encoding provides $\langle c, \{\{B, D\}\} \rangle$.

- [Negated assumptions as assumptions] Assume an assumption A. $\neg A$ is not seen as assumption. Create new assumption \sqrt{A} which should be the negated A. The following justifications must be added:

$$A \land \sqrt{A} \rightarrow \bot$$
$$\neg A \land \neg \sqrt{A} \rightarrow \bot$$

Now \sqrt{A} appears in the labels (while $\neg A$ doesn’t).
Other Extensions

- **Focusing the ATMS**

 Avoid label explosion

 - Restrict labels to subsets of a focus set

 - Restrict labels to an element of a fixed set of environments

- **Integrating probability into the ATMS**

 - Dempster-Shafer theory

 - Possibilistic theory

 - Certainty factors

 - Fuzzy Logic
Possibilistic ATMS (Π-ATMS)

Possibilistic Logic (Dubois and Prade)

Logical sentences = conjunctions of possibilistic propositional clauses.

- **Possibility measure** $\Pi \in [0, 1]$:
 1. $\Pi(\bot) = 0$, $\Pi(\top) = 1$
 2. $\forall p, \forall q, \Pi(p \lor q) = \max \Pi(p), \Pi(q)$
 3. but $\Pi(p \land q) \leq \min \Pi(p), \Pi(q)$

- **Necessity measure** $N \in [0, 1]$:
 1. $N(p) = 1 - \Pi(\neg p)$
 2. it follows $\forall p, \forall q, N(p \land q) = \min N(p), N(q)$
 3. and $N(p \lor q) \geq \max N(p), N(q)$

Π and N are dual
\(\Pi\)-ATMS: Possibilistic Logic

- \(N(p) = 1\) means that, given the available knowledge, \(p\) is certainly true.

- \(1 > N(p) > 0\) means that, \(p\) is somewhat certain and \(\neg p\) not certain at all.

- \(N(p) = N(\neg p) = 0 (= \Pi(p) = \Pi(\neg p) = 1)\) is the case of total ignorance. Nothing is known about the truth value of \(p\).

- \(0 < \Pi(p) < 1 (= 1 > N(p) > 0)\) means that \(p\) is somewhat impossible.

- \(\Pi(p) = 0\) means that \(p\) is certainly false.

\[\Pi\text{-ATMS: Possibilistic Logic} \]

- Clause attached with a lower bound of its necessity measure

\[(f \alpha) \text{ where } \alpha \in [0, 1], N(f) \geq \alpha \]

- Resolution rule

\[\frac{(c \alpha) \ (c' \beta)}{(\text{Resolvent}(c, c') \ \text{min } \alpha, \beta)} \]

- Example:

C1 \ (\neg a \lor \neg b \lor \neg c \ 0.7)
C2 \ (\neg d \lor c \ 0.4)

From C1 and C2 the clause \((\neg a \lor \neg b \lor \neg d \ 0.4)\) can be derived.
\(\Pi \text{-ATMS: Principles} \)

- Each clause has a weight, i.e., the lower bound of its necessity degree.

- Assumptions may also be weighted.

- \(\Pi \text{-ATMS} \) should answer the following:
 - Under what configuration of assumptions is the proposition \(p \) certain to a degree \(\alpha \)?
 - What is the inconsistency degree of a given configuration of assumptions?
 - In a given configuration of assumption, to what degree is each proposition certain?

- Note, the \(\Pi \text{-ATMS} \) in its original form is more general than the NATMS.
\[\Pi \text{-ATMS: Definitions} \]

- \([\text{Environment}] [E \alpha] \) is an environment of the proposition \(p \) iff \(N(p) \geq \alpha \) is a logical consequence of \(E \cup Th \) when all assumptions in \(E \) are set to TRUE with degree 1.

- \([\alpha\text{-Environment}] [E \alpha] \) is an \(\alpha \)-environment of \(p \) iff \([E \alpha] \) is an environment of \(p \) and \(\forall \alpha' > \alpha, [E \alpha'] \) is not an environment of \(p \).

- \([\alpha\text{-Nogood}] [E \alpha] \) is a \(\alpha \)-nogood iff \(E \cup Th \) is \(\alpha \)-inconsistent, i.e., \(E \cup Th \models (\bot \alpha) \). A \(\alpha \)-nogood is minimal if there is no other nogood \([E', \beta] \) such that \(E \subset E' \) and \(\alpha \leq \beta \).
\[\Pi\text{-ATMS: Definitions (II)}\]

Labels (only using non-weighted assumptions)

- **[(weak) consistency]** \(\forall [E_i \; \alpha_i] \in L(p), \ E_i \cup Th\) is \(\beta\)-inconsistent with \(\beta < \alpha_i\). \(\beta\) ensures that only formulas with weights \(> \beta\), and from which \(p\) can be deduced, are member of the \(p\)'s label.

- **[soundness]** \(L(p)\) is sound iff \(\forall [E_i \; \alpha_i] \in L(p)\) we have \(E_i \cup Th \models (p \; \alpha_i)\).

- **[completeness]** \(L(p)\) is complete iff for every environment \(E'\) such that \(E' \cup Th \models (p \; \alpha')\) then \(\exists [E_i \; \alpha_i] \in L(p)\) such that \(E_i \subseteq E\) and \(\alpha_i \geq \alpha'\).

- **[minimality]** \(L(p)\) is minimal iff it does not contain two environments \([E, \alpha], [E', \alpha']\) such that \(E \subseteq E'\) and \(\alpha \geq \alpha'\).
\(\Pi\text{-ATMS: Remarks}\)

- Inconsistent environments can be element of a node label.

- Subset minimality of labels is not required.

- Solutions can be ranked.
Bibliography

