Common Grounds for Modeling Mathematics in Educational Software

Introduction to the Special Track “Convergence on Math Assistants”

Walther Neuper

Institute for Softwaretechnology
Graz University of Technology

CADGME at Hagenberg Jul.11 09
Outline

1. Variety of Mathematics Assistants (MAs)
 - MAs and Doing Mathematics
 - Example: Bending Lines
 - MAs and In/Formal Mathematics

2. Common Grounds for MAs?
 - “Step” as a “Most General Unifier”?
 - Formalized (= Coded !) Contexts
 - Human Part in Doing Mathematics
Outline

1. Variety of Mathematics Assistants (MAs)
 - MAs and Doing Mathematics
 - Example: Bending Lines
 - MAs and In/Formal Mathematics

2. Common Grounds for MAs?
 - “Step” as a “Most General Unifier”?
 - Formalized (= Coded!) Contexts
 - Human Part in Doing Mathematics
Do mathematics at high school . . .

<table>
<thead>
<tr>
<th>Computer Support</th>
<th>Categories of Doing</th>
</tr>
</thead>
<tbody>
<tr>
<td>Simulation tools</td>
<td>(1) Model: identify objects, relations, determine methods, . . .</td>
</tr>
<tr>
<td>Coach, InLot</td>
<td></td>
</tr>
<tr>
<td>CAS</td>
<td>(2) Operate: calculate, simplify, solve, differentiate, integrate, . . .</td>
</tr>
<tr>
<td>CAS: function graphs</td>
<td>(3) Interpret: place results in context relate (recur ?) to (1)</td>
</tr>
<tr>
<td>DGS !</td>
<td></td>
</tr>
<tr>
<td>Spreadsheets</td>
<td></td>
</tr>
<tr>
<td>Presentation tools</td>
<td>(4) Communicate: present, discuss, argument, reason</td>
</tr>
<tr>
<td>Internet</td>
<td></td>
</tr>
</tbody>
</table>

. . . with computer support.
MAs and Doing Mathematics

Do mathematics at high school . . .

<table>
<thead>
<tr>
<th>Computer Support</th>
<th>Categories of Doing</th>
</tr>
</thead>
<tbody>
<tr>
<td>Simulation tools</td>
<td>(1) Model:</td>
</tr>
<tr>
<td>Coach, InLot</td>
<td>identify objects, relations,</td>
</tr>
<tr>
<td></td>
<td>determine methods, . . .</td>
</tr>
<tr>
<td>CAS</td>
<td>(2) Operate:</td>
</tr>
<tr>
<td></td>
<td>calculate, simplify, solve,</td>
</tr>
<tr>
<td></td>
<td>differentiate, integrate, . . .</td>
</tr>
<tr>
<td>CAS: function graphs</td>
<td>(3) Interpret:</td>
</tr>
<tr>
<td>DGS !</td>
<td>place results in context</td>
</tr>
<tr>
<td>Spreadsheets</td>
<td>relate (recur ?) to (1)</td>
</tr>
<tr>
<td>Presentation tools</td>
<td>(4) Communicate:</td>
</tr>
<tr>
<td>Internet</td>
<td>present, discuss,</td>
</tr>
<tr>
<td></td>
<td>argument, reason</td>
</tr>
</tbody>
</table>

. . . with computer support.

Walther Neuper

ConvMathAssist
Outline

1. Variety of Mathematics Assistants (MAs)
 - MAs and Doing Mathematics
 - Example: Bending Lines
 - MAs and In/Formal Mathematics

2. Common Grounds for MAs?
 - “Step” as a “Most General Unifier”?
 - Formalized (= Coded!) Contexts
 - Human Part in Doing Mathematics
Example: Bending Lines

From a textbook for Technical High Schools (HTL)

Determine the bending line of a beam of length L, which consists of homogenous material, which is clamped on one side and which is under constant line load q_0.

Hint: Use the constraints $y(0) = 0$, $y'(0) = 0$, $V(0) = q_0 \cdot L$, $M_b(L) = 0$.

Abb. 7.59
1. Variety of Mathematics Assistants (MAs)
 - MAs and Doing Mathematics
 - Example: Bending Lines
 - MAs and In/Formal Mathematics

2. Common Grounds for MAs?
 - “Step” as a “Most General Unifier”?
 - Formalized (= Coded !) Contexts
 - Human Part in Doing Mathematics
Do mathematics at high school...

<table>
<thead>
<tr>
<th>Intuitively, informally</th>
<th>Formally</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model:</td>
<td>Operate:</td>
</tr>
<tr>
<td>Simulation tools</td>
<td>CAS</td>
</tr>
<tr>
<td>Coach, InLot</td>
<td>CAS: function graphs</td>
</tr>
<tr>
<td>Coach, InLot</td>
<td>CAS</td>
</tr>
<tr>
<td>Simulation tools</td>
<td>Coach, InLot</td>
</tr>
<tr>
<td>Model:</td>
<td>Operate:</td>
</tr>
<tr>
<td>Simulation tools</td>
<td>CAS</td>
</tr>
<tr>
<td>Coach, InLot</td>
<td>CAS: function graphs</td>
</tr>
<tr>
<td>Coach, InLot</td>
<td>CAS</td>
</tr>
<tr>
<td>Simulation tools</td>
<td>Coach, InLot</td>
</tr>
</tbody>
</table>

- **Model:** specify formally
- **Operate:** do steps and justify
- **Interpret:** relate (recur ?) to (1)
- **Communicate:** present, discuss, argument, reason

... with computer support.

Walther Neuper ConvMathAssist
MAs and In/Formal Mathematics

Do mathematics at high school . . .

<table>
<thead>
<tr>
<th>Intuitively, informally</th>
<th>Formally</th>
</tr>
</thead>
<tbody>
<tr>
<td>Simulation tools</td>
<td>(1) Model: identify objects, relations, determine methods, . . . specify formally</td>
</tr>
<tr>
<td>Coach, InLot</td>
<td>(2) Operate: calculate, simplify, solve, differentiate, integrate, . . . prove theorems ? do steps and justify</td>
</tr>
<tr>
<td>CAS</td>
<td>CAS: function graphs</td>
</tr>
<tr>
<td>DGS !</td>
<td>(3) Interpret: place results in context relate (recur ?) to (1)</td>
</tr>
<tr>
<td>Spreadsheets</td>
<td>(4) Communicate: present, discuss, argument, reason</td>
</tr>
<tr>
<td>Presentation tools</td>
<td>. . . with computer support.</td>
</tr>
<tr>
<td>Internet</td>
<td></td>
</tr>
</tbody>
</table>
MAs and In/Formal Mathematics

Do mathematics at high school . . .

<table>
<thead>
<tr>
<th>Intuitively, informally</th>
<th>Formally</th>
</tr>
</thead>
<tbody>
<tr>
<td>Simulation tools</td>
<td>(1) Model: identify objects, relations, determine methods, . . . specify formally</td>
</tr>
<tr>
<td>Coach, InLot</td>
<td>(2) Operate: calculate, simplify, solve, differentiate, integrate, . . . prove theorems? do steps and justify</td>
</tr>
<tr>
<td>CAS</td>
<td>(3) Interpret: place results in context relate (recur ?) to (1)</td>
</tr>
<tr>
<td>CAS: function graphs</td>
<td>(4) Communicate: present, discuss, argument, reason</td>
</tr>
<tr>
<td>DGS !</td>
<td></td>
</tr>
<tr>
<td>Spreadsheets</td>
<td></td>
</tr>
<tr>
<td>Presentation tools</td>
<td></td>
</tr>
<tr>
<td>Internet</td>
<td></td>
</tr>
</tbody>
</table>

. . . with computer support.
MAs and In/Formal Mathematics

Do mathematics at high school...

<table>
<thead>
<tr>
<th>intuitively, informally</th>
<th>formally</th>
</tr>
</thead>
<tbody>
<tr>
<td>Simulation tools</td>
<td>(1) Model: identify objects, relations, determine methods, ...</td>
</tr>
<tr>
<td>Coach, InLot</td>
<td>specify formally</td>
</tr>
<tr>
<td>CAS</td>
<td>(2) Operate: calculate, simplify, solve, differentiate, integrate, ...</td>
</tr>
<tr>
<td></td>
<td>prove theorems ? do steps and justify</td>
</tr>
<tr>
<td>CAS: function graphs</td>
<td>(3) Interpret: place results in context relate (recur ?) to (1)</td>
</tr>
<tr>
<td>DGS !</td>
<td></td>
</tr>
<tr>
<td>Spreadsheets</td>
<td></td>
</tr>
<tr>
<td>Presentation tools</td>
<td>(4) Communicate: present, discuss, argument, reason</td>
</tr>
<tr>
<td>Internet</td>
<td></td>
</tr>
</tbody>
</table>

...with computer support.
MAs and In/Formal Mathematics

Do mathematics at high school . . .

<table>
<thead>
<tr>
<th>. . . intuitively, informally</th>
<th>. . . formally</th>
</tr>
</thead>
<tbody>
<tr>
<td>Simulation tools</td>
<td>(1) Model:</td>
</tr>
<tr>
<td>Coach, InLot</td>
<td>identify objects, relations,</td>
</tr>
<tr>
<td></td>
<td>determine methods, . . .</td>
</tr>
<tr>
<td>CAS</td>
<td>(2) Operate:</td>
</tr>
<tr>
<td></td>
<td>calculate, simplify, solve,</td>
</tr>
<tr>
<td></td>
<td>differentiate, integrate, . . .</td>
</tr>
<tr>
<td>CAS: function graphs</td>
<td>(3) Interpret:</td>
</tr>
<tr>
<td>DGS !</td>
<td>place results in context</td>
</tr>
<tr>
<td>Spreadsheets</td>
<td>relate (recur ?) to (1)</td>
</tr>
<tr>
<td>Presentation tools</td>
<td>(4) Communicate:</td>
</tr>
<tr>
<td>Internet</td>
<td>present, discuss,</td>
</tr>
<tr>
<td></td>
<td>argument, reason</td>
</tr>
</tbody>
</table>

. . . with computer support.

Walther Neuper
ConvMathAssist
MAs and In/Formal Mathematics

Do mathematics at high school . . .

<table>
<thead>
<tr>
<th>intuitively, informally</th>
<th>formally</th>
</tr>
</thead>
<tbody>
<tr>
<td>Simulation tools, Coach, InLot</td>
<td>(1) Model: identify objects, relations, determine methods, . . . specify formally</td>
</tr>
<tr>
<td>CAS</td>
<td>(2) Operate: calculate, simplify, solve, differentiate, integrate, . . . prove theorems? do steps and justify</td>
</tr>
<tr>
<td>CAS: function graphs, DGS, Spreadsheets</td>
<td>(3) Interpret: place results in context relate (recur ?) to (1)</td>
</tr>
<tr>
<td>Presentation tools, Internet</td>
<td>(4) Communicate: present, discuss, argument, reason</td>
</tr>
</tbody>
</table>

. . . with computer support.

Walther Neuper	ConvMathAssist
Outline

1. Variety of Mathematics Assistants (MAs)
 - MAs and Doing Mathematics
 - Example: Bending Lines
 - MAs and In/Formal Mathematics

2. Common Grounds for MAs?
 - “Step” as a “Most General Unifier”?
 - Formalized (= Coded !) Contexts
 - Human Part in Doing Mathematics
A “Step” in doing math

A *step* starts from a *Context* and produces a result which can be *justified* . . .

\[
\text{step} : \text{Context} \times \text{State} \times \text{Interact} \rightarrow \text{Context} \times \text{State} \times \text{Result}
\]

. . . where *State* concerns technicalities of MAs and

Interaction: compound operation
- draw a geometric object (e.g. ortho-center of a triangle)
- call a CAS command (e.g. \(\text{Integrate } x^3 + x^2 + x + 1 \, dx \))
- . . .

atomic operation
- substitute a value for a variable
- apply a rule (e.g. \(\int 2x \, dx = x^2 + c \)) to transform a formula
- . . .

Formality of *Context* constrains rigor of justification!
A “Step” in doing math

A *step* starts from a *Context* and produces a result which can be *justified* . . .

\[
\text{step} : \text{Context} \times \text{State} \times \text{Interact} \longrightarrow \text{Context} \times \text{State} \times \text{Result}
\]

. . . where *State* concerns technicalities of MAs and

Interaction: compound operation
- draw a geometric object (e.g. ortho-center of a triangle)
- call a CAS command (e.g. \(\text{Integrate} x^3 + x^2 + x + 1 \, dx \))
- . . .

atomic operation
- substitute a value for a variable
- apply a rule (e.g. \(\int 2x \, dx = x^2 + c \)) to transform a formula
- . . .

Formality of *Context* constrains rigor of justification!

Walther Neuper | ConvMathAssist
A “Step” in doing math

A *step* starts from a *Context* and produces a result which can be *justified* . . .

\[\text{step} : \text{Context} \times \text{State} \times \text{Interact} \longrightarrow \text{Context} \times \text{State} \times \text{Result} \]

. . . where *State* concerns technicalities of MAs and

Interaction: compound operation
- draw a geometric object (e.g. ortho-center of a triangle)
- call a CAS command (e.g. \(\text{Integrate} x^3 + x^2 + x + 1 \, dx \))
- . . .

atomic operation
- substitute a value for a variable
- apply a rule (e.g. \(\int 2x \, dx = x^2 + c \)) to transform a formula
- . . .

Formality of *Context* constrains rigor of justification!
A “Step” in doing math

A step starts from a Context and produces a result which can be justified . . .

\[
\text{step} : \text{Context} \times \text{State} \times \text{Interact} \rightarrow \text{Context} \times \text{State} \times \text{Result}
\]

. . . where State concerns technicalities of MAs and

Interaction: compound operation

- draw a geometric object (e.g. ortho-center of a triangle)
- call a CAS command (e.g. Integrate \(x^3 + x^2 + x + 1 \) \(dx \))
- . . .

atomic operation

- substitute a value for a variable
- apply a rule (e.g. \(\int 2x \ dx = x^2 + c \)) to transform a formula
- . . .

Formality of Context constrains rigor of justification!
A “Step” in doing math

A step starts from a Context and produces a result which can be justified . . .

\[
\text{step} : \text{Context} \times \text{State} \times \text{Interact} \longrightarrow \text{Context} \times \text{State} \times \text{Result}
\]

. . . where State concerns technicalities of MAs and

Interaction: compound operation
- draw a geometric object (e.g. ortho-center of a triangle)
- call a CAS command (e.g. \(\int x^3 + x^2 + x + 1 \, dx \))
- . . .

atomic operation
- substitute a value for a variable
- apply a rule (e.g. \(\int 2x \, dx = x^2 + c \)) to transform a formula
- . . .

Formality of Context constrains rigor of justification !
Variety of Mathematics Assistants (MAs)
- MAs and Doing Mathematics
- Example: Bending Lines
- MAs and In/Formal Mathematics

Common Grounds for MAs?
- “Step” as a “Most General Unifier”?
- Formalized (= Coded !) Contexts
- Human Part in Doing Mathematics
Formal specification

Specification of the problem on the bending line:

- **in**: length \(L \), function \(q_0 \)
- **pre**: \(L > 0 \land q_0 \text{ is integrable in } x \)
- **out**: function \(y(x) \)
- **post**: \(y(0) = 0 \land y'(0) = 0 \land V(0) = q_0 \cdot L \land M_b(L) = 0 \)

where \(V \) and \(M_b \) are constant function symbols in the theory of “bending lines”.

Formal Specification required for *mechanical* steps!
Formal specification

Specification of the problem on the bending line:

\[
\begin{align*}
\text{in} & : \text{length } L, \text{ function } q_0 \\
\text{pre} & : L > 0 \land q_0 \text{ is integrable in } x \\
\text{out} & : \text{function } y(x) \\
\text{post} & : y(0) = 0 \land y'(0) = 0 \land V(0) = q_0.L \land M_b(L) = 0
\end{align*}
\]

where \(V \) and \(M_b \) are constant function symbols in the theory of “bending lines”.

Formal Specification required for mechanical steps!
1. Variety of Mathematics Assistants (MAs)
 - MAs and Doing Mathematics
 - Example: Bending Lines
 - MAs and In/Formal Mathematics

2. Common Grounds for MAs?
 - “Step” as a “Most General Unifier”?
 - Formalized (= Coded !) Contexts
 - Human Part in Doing Mathematics
The human part in formulas

(i) Problem solving creates a **Result**:

\[
\text{solve} : \text{Theory} \times \text{Context} \times \text{Specification} \rightarrow \text{Context} \times \text{Result}
\]

where

\[
\text{Specification} = \text{Input} \times \text{Precondition} \times \text{OutputVar} \times \text{Postcondition}
\]

and \(\text{post}(\text{in}, \text{res}) \) holds for \(\text{pre}(\text{in}) \)

(ii) Theorem proving constructs a **Theorem**:

\[
\text{prove} : \text{Theory} \times \text{Context} \times \text{Predicate} \rightarrow \text{Theory} \times \text{Theorem}
\]

(i) expands knowledge **outside** the formal model - “applied mat”
(ii) expands knowledge **within** the formal domain – “pure math”
The human part in formulas

(i) Problem solving creates a Result:

\[
solve : \text{Theory} \times \text{Context} \times \text{Specification} \rightarrow \text{Context} \times \text{Result}
\]

where

\[
\text{Specification} = \text{Input} \times \text{Precondition} \times \text{OutputVar} \times \text{Postcondition}
\]

and \(post(in, res) \) holds for \(pre(in) \)

(ii) Theorem proving constructs a Theorem:

\[
prove : \text{Theory} \times \text{Context} \times \text{Predicate} \rightarrow \text{Theory} \times \text{Theorem}
\]

(i) expands knowledge outside the formal model - “applied mat”
(ii) expands knowledge within the formal domain – “pure math”
The human part in formulas

(i) Problem solving creates a Result:

\[
\text{solve} : \text{Theory} \times \text{Context} \times \text{Specification} \longrightarrow \text{Context} \times \text{Result}
\]

where

\[
\text{Specification} = \text{Input} \times \text{Precondition} \times \text{OutputVar} \times \text{Postcondition}
\]

and \(\text{post}(\text{in}, \text{res}) \) holds for \(\text{pre}(\text{in}) \)

(ii) Theorem proving constructs a Theorem:

\[
\text{prove} : \text{Theory} \times \text{Context} \times \text{Predicate} \longrightarrow \text{Theory} \times \text{Theorem}
\]

(i) expands knowledge outside the formal model - “applied mat”
(ii) expands knowledge within the formal domain – “pure math”
The human part in formulas

(i) Problem solving creates a Result:

\[\text{solve} : \text{Theory} \times \text{Context} \times \text{Specification} \rightarrow \text{Context} \times \text{Result} \]

where

\[\text{Specification} = \text{Input} \times \text{Precondition} \times \text{OutputVar} \times \text{Postcondition} \]

and \(\text{post}(\text{in}, \text{res}) \) holds for \(\text{pre}(\text{in}) \)

(ii) Theorem proving constructs a Theorem:

\[\text{prove} : \text{Theory} \times \text{Context} \times \text{Predicate} \rightarrow \text{Theory} \times \text{Theorem} \]

(i) expands knowledge outside the formal model - “applied mat”
(ii) expands knowledge within the formal domain – “pure math”
“Common Grounds”?

Some particular answers . . .:

1. Convergence on concepts for learning with MAs?
 - Step is a basic notion, less or more formal!
 - . . .

2. Convergence on technology of MAs?
 - Serve MAs with Logic-based math-engines!
 - . . .

3. Convergence on principles of e-learning?
 - We need a formal domain model of e-learning!
 - . . .

. . . looking forward to many other answers in the track!
“Common Grounds”? Some particular answers . . . :

1. Convergence on concepts for learning with MAs?
 - *Step is a basic notion, less or more formal!*
 - . . .

2. Convergence on technology of MAs?
 - *Serve MAs with Logic-based math-engines!*
 - . . .

3. Convergence on principles of e-learning?
 - *We need a formal domain model of e-learning!*
 - . . .

. . . looking forward to many other answers in the track!
"Common Grounds"? *Some particular answers* . . . :

1. Convergence on concepts for learning with MAs?
 - *Step is a basic notion, less or more formal!*
 - . . .

2. Convergence on technology of MAs?
 - *Serve MAs with Logic-based math-engines!*
 - . . .

3. Convergence on principles of e-learning?
 - *We need a formal domain model of e-learning!*
 - . . .

. . . looking forward to many other answers in the track!
“Common Grounds”? Some particular answers . . .:

1. Convergence on concepts for learning with MAs?
 - Step is a basic notion, less or more formal!
 - . . .

2. Convergence on technology of MAs?
 - Serve MAs with Logic-based math-engines!
 - . . .

3. Convergence on principles of e-learning?
 - We need a formal domain model of e-learning!
 - . . .

. . . looking forward to many other answers in the track!
“Common Grounds”? *Some particular answers* . . .:

1. Convergence on **concepts** for learning with MAs?
 - *Step is a basic notion, less or more formal!*
 - …

2. Convergence on **technology** of MAs?
 - *Serve MAs with Logic-based math-engines!*
 - …

3. Convergence on **principles** of e-learning?
 - *We need a *formal domain model* of e-learning!*
 - …

…looking forward to many other answers in the track!
“Common Grounds” ? *Some particular answers* . . . :

1. Convergence on **concepts** for learning with MAs ?
 - *Step is a basic notion, less or more formal !
 - . . .

2. Convergence on **technology** of MAs ?
 - *Serve MAs with Logic-based math-engines !
 - . . .

3. Convergence on **principles** of e-learning ?
 - *We need a formal domain model of e-learning !
 - . . .

. . . looking forward to many other answers in the track !