Notes on ISAC’s Dialogues

Walther Neuper
neuper@ist.tugraz.at
March 19, 2008

There is a novel precondition for dialog design: ISAC’s math-engine is powerful enough to feature a dialog between partners on an equal base – both of the partners, the learner and the system, can do a step in the calculation, both can reject or accept a step of the other partner!

Stepwise calculation can be broken down to minimal parts of interaction; such a part concerns a step from the current formula \(f \) applying a tactic \(tac \) which yields the resulting formula \(f' \) (the derivation of \(f \)), i.e. \(f \xrightarrow{tac} f' \). These parts are called ’dialog atoms’ and ordered by descending ’activity’ of the learner:

1. \([X1]^{1}\) given \(f \), input the next formula \(f' \)
2. given a partial \(f' \) (supplied by ISAC), complete \(f' \) such that it is a derivation of \(f \)
3. given \(f \), input a tactic \(tac \) to be applied to \(f \)
4. given \(f \), select \(tac \) from a list (supplied by ISAC) to be applied to \(f \). There are several possibilities for ISAC to compile the list:
 - \([X1]\) take all tactics from the current method (regardless the applicability of the tactic)
 - take all applicable tactics from the method
 - \([X2]^{2}\) take all applicable atomic rewrite tactics from the method (i.e. rewrite tactics applying only one theorem or one calculation).
 - ...
5. given \(f \) and a partial \(tac \), complete the \(tac \) (i.e. a theorem, a substitution, etc.) such that it can be applied to \(f \)

1Items marked with \([X1]\) have been implemented in ISAC by December 2003.
2Items marked with \([X2]\) have been implemented in ISAC by February 2008, inspired by a field test. An additional requirement was to present the theorems as simple as possible, e.g. without questionmarks and without conditions.
6. given \(f \), \(tac \), and a partial \(f' \), complete \(f' \) such that it is the result of applying \(tac \) to \(f \)

7. given \(f \) and \(f' \), input \(tac \) such that \(f' \) is the result of \(f \) applying \(tac \)

8. given \(f \) and \(f' \), select \(tac \) from a list (supplied by ISAC) such that \(f' \) is the result of \(f \) applying \(tac \)

9. given \(f \), \(f' \) and a partial \(tac \), complete \(tac \) such that \(f' \) is the result of \(f \) applying \(tac \)

10. given \(f \), hit a button to get a \(tac \) to apply

11. given (an applicable) \(tac \), hit a button to get \(f' \)

12. [X1] given \(f \), hit a button to get \(f' \)

[Neu01], p.112 ff, tries basic considerations to establish a symmetry in the dialog between the user and the system: (1.) is symmetric to (12.), etc.

The surprising number of dialog atoms states a real challenge for ISAC’s dialog design, which we hope to accomplish in cooperation with experts in didactics and learning theory.

References