Mechanised Explanation in "Systems that Explain Themselves"
Magic caused by Confusion of Languages?

Walther Neuper

IICM, Institute for Computer Media,
University of Technology.
Graz, Austria

CME-EI: Computer Mathematics in Education — Enlightenment or Incantation?
at CICM, Hagenberg, Austria
Aug. 17, 2018
1. Magic caused by Confusion of Languages?

2. Mechanical Explanation and Language Layers
 - Term Language
 - Proof Language
 - Specification Language
 - “Next step guidance”
 - Programming Language

3. Conclusions?
Confusion of Languages?

<table>
<thead>
<tr>
<th>Questions . . .</th>
<th>. . . on natural language</th>
<th>. . . on formal language of math</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>When is a sentence true ?</td>
</tr>
<tr>
<td></td>
<td></td>
<td>with trust between individuals</td>
</tr>
<tr>
<td></td>
<td></td>
<td>How is meaning grounded ?</td>
</tr>
<tr>
<td></td>
<td></td>
<td>on sensual experience + Wittgenstein’s “Sprachspiel”</td>
</tr>
<tr>
<td></td>
<td></td>
<td>What does language communicate ?</td>
</tr>
<tr>
<td></td>
<td></td>
<td>emotions and explanations</td>
</tr>
<tr>
<td></td>
<td></td>
<td>How is self-referentiality handled ?</td>
</tr>
<tr>
<td></td>
<td></td>
<td>as support of personal insight</td>
</tr>
<tr>
<td></td>
<td></td>
<td>How is relation to individuality ?</td>
</tr>
<tr>
<td></td>
<td></td>
<td>enriches personal experience</td>
</tr>
<tr>
<td></td>
<td></td>
<td>How is relation to time ?</td>
</tr>
<tr>
<td></td>
<td></td>
<td>access past, presence, future</td>
</tr>
</tbody>
</table>
Confusion of Languages?

Questions . . .
- . . . on natural language
 - When is a sentence true?
 - with trust between individuals
 - How is meaning grounded?
 - on sensual experience + Wittgenstein’s “Sprachspiel”
 - on applicability of rules, on formal semantics
- . . . on formal language of math
 - with derivation in (formal) logic
 - What does language communicate?
 - emotions and explanations
 - formal content
 - How is self-referentiality handled?
 - as support of personal insight
 - by separated language layers
 - How is relation to individuality?
 - enriches personal experience
 - independent from individuals
 - How is relation to time?
 - access past, presence, future
 - timeless (also temporal logic)
Confusion of Languages?

<table>
<thead>
<tr>
<th>Questions</th>
<th>on natural language</th>
<th>on formal language of math</th>
</tr>
</thead>
<tbody>
<tr>
<td>When is a sentence true?</td>
<td>with trust between individuals</td>
<td>with derivation in (formal) logic</td>
</tr>
<tr>
<td>How is meaning grounded?</td>
<td>on sensual experience + Wittgenstein’s “Sprachspiel”</td>
<td>on applicability of rules, on formal semantics</td>
</tr>
<tr>
<td>What does language communicate?</td>
<td>emotions and explanations</td>
<td>formal content</td>
</tr>
<tr>
<td>How is self-referentiality handled?</td>
<td>as support of personal insight</td>
<td>by separated language layers</td>
</tr>
<tr>
<td>How is relation to individuality?</td>
<td>enriches personal experience</td>
<td>independent from individuals</td>
</tr>
<tr>
<td>How is relation to time?</td>
<td>access past, presence, future</td>
<td>timeless (also temporal logic)</td>
</tr>
</tbody>
</table>
Confusion of Languages?

Questions . . .

<table>
<thead>
<tr>
<th>. . . on natural language</th>
<th>. . . on formal language of math</th>
</tr>
</thead>
<tbody>
<tr>
<td>When is a sentence true ?</td>
<td></td>
</tr>
<tr>
<td>with trust between individuals</td>
<td>with derivation in (formal) logic</td>
</tr>
<tr>
<td>How is meaning grounded ?</td>
<td></td>
</tr>
<tr>
<td>on sensual experience + Wittgenstein’s “Sprachspiel”</td>
<td>on applicability of rules, on formal semantics</td>
</tr>
<tr>
<td>What does language communicate ?</td>
<td></td>
</tr>
<tr>
<td>emotions and explanations</td>
<td>formal content</td>
</tr>
<tr>
<td>How is self-referentiality handled ?</td>
<td></td>
</tr>
<tr>
<td>as support of personal insight</td>
<td>by separated language layers</td>
</tr>
<tr>
<td>How is relation to individuality ?</td>
<td></td>
</tr>
<tr>
<td>enriches personal experience</td>
<td>independent from individuals</td>
</tr>
<tr>
<td>How is relation to time ?</td>
<td></td>
</tr>
<tr>
<td>access past, presence, future</td>
<td>timeless (also temporal logic)</td>
</tr>
</tbody>
</table>
Confusion of Languages?

Questions . . .
- . . . on natural language
- . . . on formal language of math

When is a sentence true?
- with trust between individuals
- with derivation in (formal) logic

How is meaning grounded?
- on sensual experience + Wittgenstein’s “Sprachspiel”
- on applicability of rules, on formal semantics

What does language communicate?
- emotions and explanations
- formal content

How is self-referentiality handled?
- as support of personal insight
- by separated language layers

How is relation to individuality?
- enriches personal experience
- independent from individuals

How is relation to time?
- access past, presence, future
- timeless (also temporal logic)
Confusion of Languages?

Questions...

- **on natural language**
- **on formal language of math**

<table>
<thead>
<tr>
<th>When is a sentence true?</th>
</tr>
</thead>
<tbody>
<tr>
<td>with trust between individuals</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>How is meaning grounded?</th>
</tr>
</thead>
<tbody>
<tr>
<td>on sensual experience + Wittgenstein’s “Sprachspiel”</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>What does language communicate?</th>
</tr>
</thead>
<tbody>
<tr>
<td>emotions and explanations</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>How is self-referentiality handled?</th>
</tr>
</thead>
<tbody>
<tr>
<td>as support of personal insight</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>How is relation to individuality?</th>
</tr>
</thead>
<tbody>
<tr>
<td>enriches personal experience</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>How is relation to time?</th>
</tr>
</thead>
<tbody>
<tr>
<td>access past, present, future</td>
</tr>
</tbody>
</table>
Confusion of Languages?

Questions

<table>
<thead>
<tr>
<th>When is a sentence true?</th>
<th>How is meaning grounded?</th>
<th>What does language communicate?</th>
<th>How is self-referentiality handled?</th>
<th>How is relation to individuality?</th>
<th>How is relation to time?</th>
</tr>
</thead>
<tbody>
<tr>
<td>... on natural language</td>
<td>... on formal language of math</td>
</tr>
<tr>
<td>With trust between individuals</td>
<td>With derivation in (formal) logic</td>
<td>On applicability of rules, on formal semantics</td>
</tr>
<tr>
<td>On sensual experience + Wittgenstein’s “Sprachspiel”</td>
<td>On sensual experience + Wittgenstein’s “Sprachspiel”</td>
<td>Emotions and explanations</td>
<td>Formal content</td>
<td>Emotions and explanations</td>
<td>Formal content</td>
</tr>
<tr>
<td>As support of personal insight</td>
<td>As support of personal insight</td>
<td>How is self-referentiality handled?</td>
<td>By separated language layers</td>
<td>How is self-referentiality handled?</td>
<td>By separated language layers</td>
</tr>
<tr>
<td>Enriches personal experience</td>
<td>Enriches personal experience</td>
<td>How is relation to individuality?</td>
<td>Independent from individuals</td>
<td>How is relation to individuality?</td>
<td>Independent from individuals</td>
</tr>
<tr>
<td>Access past, presence, future</td>
<td>Access past, presence, future</td>
<td>How is relation to time?</td>
<td>Timeless (also temporal logic)</td>
<td>How is relation to time?</td>
<td>Timeless (also temporal logic)</td>
</tr>
</tbody>
</table>

Confuse Languages?

Languages?

Term Language

Proof Language

Specification

Step Guidance

Prog. Language

Conclusions
1. Magic caused by Confusion of Languages?

2. Mechanical Explanation and Language Layers
 - Term Language
 - Proof Language
 - Specification Language
 - “Next step guidance”
 - Programming Language

3. Conclusions?
Term Language

The **demo** has shown . . .

- principal benefits
 - uniformity over all domains of mathematics
 - type system efficiently excludes ambiguities
 - explicit description of operations and respective rules

- added value of implementation
 - a formula’s elements are connected with definitions
 - types are transparent by mouse pointer
 - feedback to input of formulas
 - structure of formulas, i.e. sub-terms are transparent
 - representation adaptable to engineers’ needs
The demo has shown . . .

- principal benefits
 - uniformity over all domains of mathematics
 - type system efficiently excludes ambiguities
 - explicit description of operations and respective rules

- added value of implementation
 - a formula’s elements are connected with definitions
 - types are transparent by mouse pointer
 - feedback to input of formulas
 - structure of formulas, i.e. sub-terms are transparent
 - representation adaptable to engineers’ needs
Term Language

The demo has shown . . .

- principal benefits
 - uniformity over all domains of mathematics
 - type system efficiently excludes ambiguities
 - explicit description of operations and respective rules

- added value of implementation
 - a formula’s elements are connected with definitions
 - types are transparent by mouse pointer
 - feedback to input of formulas
 - structure of formulas, i.e. sub-terms are transparent
 - representation adaptable to engineers’ needs
1 Magic caused by Confusion of Languages?

2 Mechanical Explanation and Language Layers
 Term Language
 Proof Language
 Specification Language
 “Next step guidance”
 Programming Language

3 Conclusions?
Proof Language . . .

. . . adapts to conventions of engineering mathematics:

Figure: Conventional worksheet on ISAC’s front-end
Proof Language

- Principal benefits
 - calculations in a conventional format
 - all steps of calculation in a consistent framework
 - each step is justified by theorems
 - specific steps equivalent to Computer Algebra
 - Computer Algebra decomposed into elementary steps

- Added value of implementation
 - change from survey to detail in the calculation tree (collapsing and expanding)
 - justification for any step can be inspected on demand
 - steps can be redone while trying alternative ways
 - alternatives can be tried in parallel windows
Proof Language

• Principal benefits
 • calculations in a conventional format
 • all steps of calculation in a consistent framework
 • each step is justified by theorems
 • specific steps equivalent to Computer Algebra
 • Computer Algebra decomposed into elementary steps

• Added value of implementation
 • change from survey to detail in the calculation tree (collapsing and expanding)
 • justification for any step can be inspected on demand
 • steps can be redone while trying alternative ways
 • alternatives can be tried in parallel windows
1. Magic caused by Confusion of Languages?

2. Mechanical Explanation and Language Layers
 - Term Language
 - Proof Language
 - Specification Language
 - “Next step guidance”
 - Programming Language

3. Conclusions?
Formal specification of the previous Solution:

01 Problem (Biegelinie, [Biegelinien])
02 Specification:
03 Model:
04 Given : Traegerlaenge L, Streckenlast q₀
05 Where : q₀ ist_integrierbar_auf [0, L]
06 Find : Biegelinie y
07 Relate : Randbedingungen [Q 0 = q₀ · L, M₀ L = 0, y 0 = 0, \(\frac{d}{dx} y 0 = 0 \)]
08 References:
09 Theory : Biegelinie
10 x Problem : ["Biegelinien"]
11 o Method : ["IntegrierenUndKonstanteBestimmen2"]
12 Solution:

Hidden data for “next step guidance”:

[([Traegerlaenge L, Streckenlast q₀, Biegelinie y, Randbedingungen [Q 0 = q₀ · L, M₀ L = 0, y 0 = 0, \(\frac{d}{dx} y 0 = 0 \)], FunktionsVariable x])]
Specification Language

- Principal benefits
 - formal specification prepares mechanical solution
 - pre-condition determines solvability
 - post-condition makes essence of a problem explicit
 - problems decomposed into sub-problems (with specifications)

- Added value of implementation
 - specifications can be easily searched and tried
 - trees of specifications allow automated refinement
 - successfully specified problems solved by key stroke
 - sub-problems can be interactively arranged
 - specifications as black boxes raises abstraction in problem solving, see slide movie
Specification Language

Principal benefits
- formal specification prepares mechanical solution
- pre-condition determines solvability
- post-condition makes essence of a problem explicit
- problems decomposed into sub-problems (with specifications)

Added value of implementation
- specifications can be easily searched and tried
- trees of specifications allow automated refinement
- successfully specified problems solved by key stroke
- sub-problems can be interactively arranged
- specifications as black boxes raises abstraction in problem solving, see slide movie
Start Example

Problem [area-of-circle]

Problem [area-of-circle]

Example 1

From a horizontally lying pipe with a diameter of 8 cm there are 5 liters of water flowing out per second. At what height is this pipe, if the horizontal distance between outlet and incidence on the floor is 80 cm?

Note: First determine the exit velocity (by use of the volume of water per second and of the cross-section area.)

\[d \]
Start Example

From a horizontally lying pipe with a diameter of 8 cm there are 5 liters of water flowing out per second. At what height is this pipe, if the horizontal distance between outlet and incidence on the floor is 80 cm?
Note: First determine the exit velocity (by use of the volume of water per second and of the cross-section area.)
Problem modelled ok
Start considering sub-problems
Select sub-problems

Problem [rational, equation]

Find: $h \text{ m}$
Select sub-problems

Model:
- Given: Diameter $d = 8$ cm, FlowRate $\phi = 54$ l/s,
 HorizontalDistance $s = 80$ cm
- Where: $d > 0 \land \phi > 0 \land s > 0$
- Find: HeightOfPipe h

Problem [rational, equation]

Problem [velocity-space-time, find-time]

Find: h m
Select sub-problems

Problem [rational, equation]

\[v = \frac{s}{t} \]

Problem [velocity-space-time, find-time]

Problem [flow-rate, find-velocity]

Find: \(h \) m

\[d \text{ cm, } \phi \text{ l/s, } s \text{ cm} \]
Select sub-problems

- d cm, φ l/s, s cm
- Problem [rational, equation]
- Problem [velocity-space-time, find-time] \(v = \frac{s}{t} \)
- Problem [flow-rate, find-velocity] \(v = \frac{\phi}{A_{\text{circle}}} \)
- Problem [free-fall] \(h = \frac{g}{2} \cdot t^2 \)

Find: \(h \) m
Delete irrelevant sub-problems

Problem [rational, equation]

Problem [flow-rate, find-velocity]

Problem [velocity-space-time, find-time]

Problem [free-fall]

Find: \(h \) m

Problem [area-of-circle]
Select relevant sub-problems

- **Problem [area-of-circle]**
 \[A_{\text{circle}} = \left(\frac{d}{2} \right)^2 \cdot \pi \]

- **Problem [velocity-space-time, find-time]**
 \[\nu = \frac{s}{t} \]

- **Problem [flow-rate, find-velocity]**
 \[\nu = \frac{\phi}{A_{\text{circle}}} \]

- **Problem [free-fall]**
 \[h = \frac{g}{2} \cdot t^2 \]
What is given / has to be found?

- Problem [area-of-circle]
 \[A_{\text{circle}} = \left(\frac{d}{2} \right)^2 \cdot \pi \]

- Problem [velocity-space-time, find-time]
 \[\nu = \frac{s}{t} \]

- Problem [flow-rate, find-velocity]
 \[\nu = \frac{\varphi}{A_{\text{circle}}} \]

- Problem [free-fall]
 \[h = \frac{g}{2} \cdot t^2 \]

Find: \(h \) m

Given: Diameter \(d = 8 \text{ cm} \), FlowRate \(\varphi = 54 \text{ l/s, } \)
HorizontalDistance \(s = 80 \text{ cm} \)
Where: \(d > 0 \land \varphi > 0 \land s > 0 \)
Find: \(\text{HeightOfPipe} h \)
What is given / has to be found?

- Diameter \(d = 8 \, \text{cm} \), flow rate \(\phi = 54 \, \text{l/s} \), horizontal distance \(s = 80 \, \text{cm} \)

Find:
- Height of pipe \(h \)
Connect “Given” and “Find”

Problem [flow-rate, find-velocity]
\[v = \frac{\phi}{A_{circle}} \]

Problem [velocity-space-time, find-time]
\[v = \frac{s}{t} \]

Problem [free-fall]
\[h = \frac{g}{2} \cdot t^2 \]

Find: \(h \) m

Problem [area-of-circle]
\[A_{circle} = \left(\frac{d}{2} \right)^2 \cdot \pi \]

Given: Diameter \(d = 8 \text{ cm} \), FlowRate \(\phi = 54 \text{l/s} \), HorizontalDistance \(s = 80 \text{ cm} \)
Where: \(d > 0 \land \phi > 0 \land s > 0 \)
Find: HeightOfPipe \(h \)
Connect “Given” and “Find”

Problem [flow-rate, find-velocity]

Problem [velocity-space-time, find-time]

Problem [free-fall]

Find: h m

Problem [area-of-circle]
Connect “Given” and “Find”

Model:
Given: Diameter $d = 8 \text{ cm}$, Flow Rate $\phi = 54 \text{ l/s}$,
 Horizontal Distance $s = 80 \text{ cm}$
Where: $d > 0 \land \phi > 0 \land s > 0$
Find: RightOfPipe h

Problem [area-of-circle]

$A_{circle} = \left(\frac{d}{2}\right)^2 \cdot \pi$

Problem [velocity-space-time, find-time]

$v = \frac{s}{t}$

Problem [flow-rate, find-velocity]

$v = \frac{\phi}{A}$

Problem [free-fall]

$h = \frac{g}{2} \cdot t^2$

Find: $h \text{ m}$
Connect “Given” and “Find”

Problem [flow-rate, find-velocity]
\[\nu = \frac{\phi}{A_{\text{circle}}} \]

Problem [velocity-space-time, find-time]
\[\nu = \frac{s}{t} \]

Problem [free-fall]
\[h = \frac{g}{2} \cdot t^2 \]

Find: \(h \) m

\[d \text{ cm}, \ \phi \text{ l/s}, \ s \text{ cm} \]
Connect “Given” and “Find”

Problem [flow-rate, find-velocity]
\[\nu = \frac{\phi}{A} \]

Problem [velocity-space-time, find-time]
\[\nu = \frac{s}{t} \]

Problem [area-of-circle]
\[A_{\text{circle}} = \frac{(d)}{2} \cdot \pi \]

Problem [free-fall]
\[h = \frac{g}{2} \cdot t^2 \]

Find: \(h \) \text{m}
Dangling connection ???

- Problem [flow-rate, find-velocity]
 \[\nu = \frac{\phi}{A_{\text{circle}}} \]

- Problem [velocity-space-time, find-time]
 \[\nu = \frac{s}{t} \]

- Problem [free-fall]
 \[h = \frac{g}{2} \cdot t^2 \]

Find: \(h \) m

- Problem [area-of-circle]
 \[A_{\text{circle}} = \left(\frac{d}{2} \right)^2 \cdot \pi \]
Rearrange sub-problems

Problem [area-of-circle]

Problem [velocity-space-time, find-time]

Problem [flow-rate, find-velocity]

Problem [free-fall]

Find: h m

d cm, \(\phi \) l/s, s cm

Problem [flow-rate, find-velocity]

Problem [velocity-space-time, find-time]

Problem [free-fall]

Find: h m

\(A_{circle} = \left(\frac{d}{2}\right)^2 \cdot \pi \)

\(v = \frac{s}{t} \)

\(h = \frac{g}{2} \cdot t^2 \)
Flipped two sub-problems

Find: h m
h m

Problem [area-of-circle]

Problem [flow-rate, find-velocity]

Problem [velocity-space-time, find-time]

Problem [free-fall]

Find: h m
Connect “Given” and “Find”

Problem [area-of-circle]

\[A_{circle} = \left(\frac{d}{2} \right)^2 \cdot \pi \]

Find: \(h \) \(m \)

Problem [flow-rate, find-velocity]

\[v = \frac{\phi}{A_{circle}} \]

\(v \) \(m/s \)

Problem [velocity-space-time, find-time]

\[v = \frac{s}{t} \]

\(t \) \(s \)

Problem [free-fall]

\[h = \frac{g}{2} \cdot t^2 \]

Find: \(h \) \(m \)
Connect “Given” and “Find”

Problem [area-of-circle]

\[A_{\text{circle}} = \left(\frac{d}{2} \right)^2 \cdot \pi \]

Problem [flow-rate, find-velocity]

\[v = \frac{\phi}{A_{\text{circle}}} \]

Problem [velocity-space-time, find-time]

\[v = \frac{s}{t} \]

Problem [free-fall]

\[h = \frac{g}{2} \cdot t^2 \]

Find: \(h \) m
Connect “Given” and “Find”

- Problem [area-of-circle]
 \[A_{\text{circle}} = \left(\frac{d}{2}\right)^2 \cdot \pi \]
 - Given: Diameter \(d = 8 \text{ cm} \), FlowRate \(\phi = 8 \text{ l/s} \)
 - Find: \(h \text{ m} \)

- Problem [flow-rate, find-velocity]
 \[v = \frac{\phi}{A_{\text{circle}}} \]
 - \(v \text{ m/s} \)
 - \(s \text{ cm} \)

- Problem [velocity-space-time, find-time]
 \[v = \frac{s}{t} \]
 - \(t \text{ s} \)

- Problem [free-fall]
 \[h = \frac{g}{2} \cdot t^2 \]
 - \(h \text{ m} \)
Connect “Given” and “Find”

Problem [area-of-circle]

\[A_{\text{circle}} = \left(\frac{d}{2}\right)^2 \pi \]

Problem [flow-rate, find-velocity]

\[v = \frac{\phi}{A_{\text{circle}}} \]

Problem [velocity-space-time, find-time]

\[v = \frac{s}{t} \]

Problem [free-fall]

\[h = \frac{g}{2} \cdot t^2 \]

Find: \(h \) m

\(d \) cm, \(\phi \) l/s, \(s \) cm

\(v \) m/s

\(h \) m

\(s \) cm

\(\phi \) m3/s
Connect “Given” and “Find”

Mechanised Explanation
Walther Neuper

Confuse Languages?
Lang. Layers
Term Language
Proof Language
Specification
Step Guidance
Prog. Language

Conclusions
All connections finished
Care about unit conversions

Problem [area-of-circle]

\[A_{\text{circle}} = \left(\frac{d}{2}\right)^2 \cdot \pi \]

Problem [flow-rate, find-velocity]

\[v = \frac{\phi}{A_{\text{circle}}} \]

Problem [velocity-space-time, find-time]

\[v = \frac{s}{t} \]

Problem [free-fall]

\[h = \frac{g}{2} \cdot t^2 \]

Find: \(h \) m

\(d \) cm, \(\phi \) l/s, \(s \) cm

\(\pi \) cm, \(\phi \) m3/s

\(s \) cm, \(s \) m

Find: \(h \) m

Care about unit conversions

Mechanised Explanation
Walther Neuper

Confuse Languages?
Lang. Layers
Term Language
Proof Language
Specification
Step Guidance
Prog. Language

Conclusions
Solution with units only

Solution:

Problem [area-of-circle]:

\[A_{\text{circle}} \text{ cm} \]
\[A_{\text{circle}} \text{ m} \]
\[\phi = 5 \text{ cm/s} \]
\[\phi = 0.005 \text{ m/s} \]

Problem [flow-rate, find-velocity]:

\[v \text{ m/s} \]
\[s = 80 \text{ cm} \]
\[s = 0, 8 \text{ m} \]

Problem [velocity-space-time, find-time]:

\[t \text{ m/s} \]
\[t \text{ m} \]

Problem [free-fall]:

\[h \text{ m} \]
Solution complete
1. Magic caused by Confusion of Languages?

2. Mechanical Explanation and Language Layers
 - Term Language
 - Proof Language
 - Specification Language
 - “Next step guidance”
 - Programming Language

3. Conclusions?
“Next step guidance” . . .

• ... in specifying a problem:

If **data** for each variant **for constructing a specification** (one variant shown above) are given, then the system can guide the student in completing a specification

• ... in step-wise constructing a solution:

If a **program** describes how to solve a problem defined by a formal specification, then this program run by **Lucas-Interpretation**

 • determines a next step (if requested by the student)
 • checks input of the student using the logical context.
“Next step guidance” . . .

• . . . in specifying a problem:

 If **data** for each variant **for constructing a specification** (one variant shown above) are given, then the system can guide the student in completing a specification

• . . . in step-wise constructing a solution:

 If a **program** describes how to solve a problem defined by a formal specification, then this program run by **Lucas-Interpretation**
 • determines a next step (if requested by the student)
 • checks input of the student using the logical context.
Outline

1. Magic caused by Confusion of Languages?

2. Mechanical Explanation and Language Layers
 - Term Language
 - Proof Language
 - Specification Language
 - “Next step guidance”
 - Programming Language

3. Conclusions?
Programming Language . . .

... for authors of mathematics knowledge.

Isabelle provides a “function package” for programming. Added value of this implementation:

- syntax errors are indicated accurately
- type annotations shift into the initial signature
- less type annotations are required
- syntax highlighting specific for constants etc
- free variables on right-hand-sides are rejected

Students might watch progress within a solution like in a debugger (on request).
Conclusions?

human/natural language \neq formal language of mathematics

respective differences are not clarified in education which . . .

Assumption: . . . misleads to conceiving mathematics as magic, i.e. to inappropriate expectations about math.

Safe assumption: these differences should not be taught.

Hopeful expectation: formal mathematics mechanised in “systems that explain themselves” provides experience with specifics of formal language.

Thank you for attention!
Conclusions?

human/natural language \neq formal language of mathematics

respective differences are not clarified in education which . . .

Assumption: . . . misleads to conceiving mathematics as magic, i.e. to inappropriate expectations about math.

Safe assumption: these differences should not be taught.

Hopeful expectation: formal mathematics mechanised in “systems that explain themselves” provides experience with specifics of formal language.

Thank you for attention !
Conclusions?

human/natural language \neq formal language of mathematics

respective differences are not clarified in education which . . .

Assumption: . . . misleads to conceiving mathematics as magic, i.e. to inappropriate expectations about math.

Safe assumption: these differences should not be taught.

Hopeful expectation: formal mathematics mechanised in “systems that explain themselves” provides experience with specifics of formal language.

Thank you for attention!
human/natural language ≠ formal language of mathematics

respective differences are not clarified in education which . . .

Assumption: . . . misleads to conceiving mathematics as magic, i.e. to inappropriate expectations about math.

Safe assumption: these differences should not be taught.

Hopeful expectation: formal mathematics mechanised in “systems that explain themselves” provides experience with specifics of formal language.

Thank you for attention!
Conclusions?

human/natural language \neq formal language of mathematics

respective differences are not clarified in education which . . .

Assumption: . . . misleads to conceiving mathematics as magic, i.e. to inappropriate expectations about math.

Safe assumption: these differences should not be taught.

Hopeful expectation: formal mathematics mechanised in “systems that explain themselves” provides experience with specifics of formal language.

Thank you for attention!
human/natural language \neq formal language of mathematics

respective differences are not clarified in education which . . .

Assumption: . . . misleads to conceiving mathematics as magic,
i.e. to inappropriate expectations about math.

Safe assumption: these differences should not be taught.

Hopeful expectation: formal mathematics mechanised in
“systems that explain themselves”
provides experience with specifics of formal language.

Thank you for attention!