Mobile Robots
Localization

Gerald Steinbauer
Institute for Software Technology
Today’s Agenda

• Motivation for Localization
• Odometry
• Odometry Calibration
• Error Model
Robotics is Easy …
“self-localization the most fundamental problem to providing a mobile robot with autonomous capabilities” [Cox 1991]
RoboCup Four-Legged League
RoboCup Four-Legged League
Geometry Again

- we are looking for a **transformation** between
 - a **reference** frame (the environment)
 - a **robot** frame
- we use the following terms **interchangeably**
 - **transformation**
 - **pose** (position + orientation)
 - **location**
- **pose**
 - 2D space: 2D position + orientation (1 angle)
 - 3D space: 3D position + orientation (quaternion, Euler angles, roll-pitch-yaw)
Taxonomy of Localization Problems

- **position tracking**
 - initial pose is known, “only” track the change of pose

- **global localization**
 - the initial is unknown, the pose has to be estimated from scratch

- **kidnapped robot problem**
 - robot is teleported without telling it

- **passive/active localization**
 - passive: robot estimates its pose on the fly
 - active: robot is able to set actions to improve its pose estimation

- **dynamic versus static environment**
 - the environment may change over time

- **single robot versus multi robots**
Why Localization is Hard?

- in general the pose **cannot** be directly estimated
 - integration of local motions
 - match against landmarks
- landmarks or observations can be **ambiguous**
- sensors have systematic/nonsystematic errors
- action execution is not completely deterministic
General Concept

- Global position information (e.g., GPS)
- Robot-mounted local motion sensors (e.g., encoder, IMU, …)
- Environment knowledge (e.g., map, landmarks)
- Local observations (e.g., vision, laser scanner)
- Prediction of the position change (e.g., odometry)
- Fusion
- Matching
- Position update
Dead Reckoning/Odometry

- **simple** solution for position tracking or pose prediction
- **Odometry**
 - in general for *wheeled* robots
 - use *wheel encoder* to estimate change of pose
- **Dead Reckoning**
 - *historic* term – also used for marine application
 - means the *combination* of actual pose, heading, speed and time
 - in robotics use a *heading* sensor, e.g. compass or IMU
Ideal and Continuous Time

- we assume
 - a differential drive robot
 - a function over time for robot’s linear and rotational velocity, $v(t), \omega(t)$
 - ideal execution
 - continuous time

- then we can simply integrate the functions in two steps to get the pose
 - $\theta(t) = \int_0^t \omega(\tau) d\tau + \theta_0$
 - $x(t) = \int_0^t v(\tau) \cos(\theta(\tau)) d\tau + x_0$
 - $y(t) = \int_0^t v(\tau) \sin(\theta(\tau)) d\tau + y_0$
Example Constant Velocities

• constant functions:
 • \(v(t) = v \)
 • \(\omega(t) = \omega \)

• assume \(x_0 = y_0 = \theta_0 = 0 \)

• lead to a circle with radius \(\frac{v}{\omega} \)
 • \(x(t) = \frac{v}{\omega} \sin(\omega t) \)
 • \(y(t) = \frac{v}{\omega} - \frac{v}{\omega} \cos(\omega t) \)
 • \(\theta(t) = \omega t \)
Differential Drive Odometry

• in reality we cannot rely on motion execution
• solution: measure the motion
• equip both wheel with a wheel encoder
• the odometry sensor delivers
 • the traveled distance of the left and right wheel during the last sampling period: $\Delta s_l, \Delta s_r$
• measure the distances for a small time interval
• assume the robot drives on a circle during the interval
Discrete Time

- if we have **discrete** time
 - we assume equidistance time steps $t_0 = 0, t_{i+1} = t_i + \Delta T$
 - we assume **piecewise** constant functions for
 - robot travels on a constant **arc** between time steps
- we **discretely** update the poses
 - $x_{i+1} = x_i - \frac{v}{\omega} \sin(\theta_i) + \frac{v}{\omega} \sin(\theta_i + \omega \Delta T)$
 - $y_{i+1} = y_i + \frac{v}{\omega} \cos(\theta_i) - \frac{v}{\omega} \cos(\theta_i + \omega \Delta T)$
 - $\theta_{i+1} = \theta_i + \omega \Delta T$
Motion Model I

\[
\begin{align*}
\Delta y & = 0 \\
\end{align*}
\]
Motion Model II

- the average travel distance of the robot is
 \[\Delta s = \frac{\Delta s_l + \Delta s_r}{2} \]
- the change of orientation is
 \[\Delta \theta = \frac{\Delta s_r - \Delta s_l}{b} \]
- if the distances are small we can assume
 \[\Delta d \approx \Delta s \]
- then the pose update is
 \[
 x_t = f(x_{t-1}, u_t) = \begin{bmatrix}
 x_{t-1} \\
 y_{t-1} \\
 \theta_{t-1}
\end{bmatrix} + \begin{bmatrix}
 \Delta s \cos\left(\theta_{t-1} + \frac{\Delta \theta}{2}\right) \\
 \Delta s \sin\left(\theta_{t-1} + \frac{\Delta \theta}{2}\right) \\
 \Delta \theta
\end{bmatrix}
 \]
Relation to Transformations

- odometry can also be represented as transformation
 - from a odometry coordinate system in the world
 - to a fixed robot-centric coordinate system
- ROS provides odometry as 3D transformation between the frames `odom` and `base_link`, rotation is represented as quaternion, usually `z`, `roll` and `pitch` assumed 0

- **2D example**

\[
A_{t-1,t} = \begin{bmatrix}
\cos\Delta\theta & -\sin\Delta\theta & \Delta s \cos\left(\theta_{t-1} + \frac{\Delta\theta}{2}\right) \\
\sin\Delta\theta & \cos\Delta\theta & \Delta s \sin\left(\theta_{t-1} + \frac{\Delta\theta}{2}\right) \\
0 & 0 & 1
\end{bmatrix}
\]

- discrete transformations can be easily combined

\[
A_{t-2,t} = A_{t-2,t-1}A_{t-1,t}
\]
Integration of Odometry

• odometry information is only available at distinct time steps

• we integrate the information to estimate the pose
 • we make an additional error due to integration
 • errors accumulate boundless
Systematic Errors in Odometry

• can be determined and corrected in general

• sources
 • unequal wheel diameters
 • actual diameter differs from nominal diameter
 • actual wheelbase differs from nominal wheelbase
 • misaligned wheels
 • finite encoder resolution
 • finite encoder sampling rate
Non-Systematic Errors in Odometry

- stochastic in their nature
- can not be corrected
- can be probabilistically modelled
- sources
 - travel over uneven floor
 - travel over unexpected obstacles on the floor
 - wheel slippage
 - slippery floor
 - to high acceleration
 - internal forces
 - non-point contact of wheel, e.g. tracks instead of wheels
Reasons for Odometry Errors

- ideal case
- different wheel diameters
- bump
- carpet

and many more ...
Calibration of Odometry

• deals with \textit{systematic} errors
• determine correction \textit{factors} to minimize the error
• classical approach UMBmark (\textit{square path experiment}) [Borenstein \& Feng 1996]
• for \textit{differential drive} robots mainly
Two Major Types of Errors

- **Type A** – uncertain wheelbase
 - \(E_b = \frac{b_{\text{actual}}}{b_{\text{nominal}}} \)
 - leads to an incorrect estimation of orientation
Two Major Types of Errors

- Type B – unequal wheel diameters
 - \(E_d = \frac{D_R}{D_L} \)
 - leads to an incremental orientation error
 - only relative not absolute in respect to the diameter
UMBmark I

- **standard** test to calibrate odometry

1. determine absolute **initial** position \((x_0, y_0)\) of the robot, reset odometry
2. drive the robot through a 4m x 4m square path in **CW** direction
 a) stop after a 4m straight line
 b) turn 90° on the spot
 c) drive **slowly**
3. record the absolute **end** position \((x_{abs}, y_{abs})\) and the odometry \((x_4, y_4)\)
4. repeat 1-3 \(n\) times, usually \(n = 5\)
 - repeat the procedure **CCW**
UMBmark II

• The procedure leads to n positions differences for each CW and CCW
 • $\epsilon_x = x_{abs} - x_{odo}$
 • $\epsilon_y = y_{abs} - y_{odo}$

• The repetition allows to limit the influence of nonsystematic errors in the procedure

• The position usually form two clusters:
 • $x_{c.g.,cw/ccw} = \frac{1}{n} \sum_{i=1}^{n} \epsilon x_i,cw/ccw$
 • $y_{c.g.,cw/ccw} = \frac{1}{n} \sum_{i=1}^{n} \epsilon y_i,cw/ccw$

[Borenstein, Feng 1996]
Results for Type A Errors Only

- consider first a robot only affected by type A errors
- assume the initial position (0,0)
 - ϵ_x, ϵ_y simply becomes $x_{c.g.}$ respectively $y_{c.g.}$
- approximate trigonometry for small angles: $L\sin\gamma \approx L\gamma$, $L\cos\gamma \approx L$
- CCW
 - $x_4 \approx -2La$
 - $y_4 \approx 2La$
- CW
 - $x_4 = -2La$
 - $y_4 = -2La$

[Borenstein, Feng 1996]
Results for Type B Error Only

- consider first a robot only affected by type B errors
- CCW
 - $x_4 \approx 2L\beta$
 - $y_4 \approx -2L\beta$
- CW
 - $x_4 = -2L\beta$
 - $y_4 = -2L\beta$

[Borenstein, Feng 1996]
Determine the Angles

- **superimpose** the results for the individual errors
 - \(x, \text{ CW} \): \(-2L\alpha - 2L\beta = -2L(\alpha + \beta) = x_{c.g,\text{cw}} \)
 - \(x, \text{ CCW} \): \(-2L\alpha + 2L\beta = -2L(\alpha - \beta) = x_{c.g,\text{ccw}} \)
 - \(y, \text{ CW} \): \(-2L\alpha - 2L\beta = -2L(\alpha + \beta) = y_{c.g,\text{cw}} \)
 - \(y, \text{ CCW} \): \(2L\alpha - 2L\beta = -2L(-\alpha + \beta) = y_{c.g,\text{ccw}} \)

- **calculate the angles** by combining
 - \(\beta = \frac{x_{c.g,\text{cw}} - x_{c.g,\text{ccw}}}{-4L} \)
 - \(\beta = \frac{y_{c.g,\text{cw}} + y_{c.g,\text{ccw}}}{-4L} \)
 - \(\alpha = \frac{x_{c.g,\text{cw}} + x_{c.g,\text{ccw}}}{-4L} \)
 - \(\alpha = \frac{y_{c.g,\text{cw}} - y_{c.g,\text{ccw}}}{-4L} \)
Determine the Correction Factors for E_d

- determine the ratio of wheel diameters E_d
- determine the radius of the curve traveled by the robot on the “straight” segment
 - \[R = \frac{L/2}{\sin(\beta/2)} \]
- determine actual ratio
 - \[E_d = \frac{D_R}{D_L} = \frac{R+b/2}{R-b/2} \]
- correct the odometry
 - assume the average wheel diameter $D_a = \frac{(D_L+D_R)}{2}$ stays constant
 - solving a system of two equations:
 - \[D_L = \frac{2}{E_d+1} D_a, \quad D_R = \frac{2}{(1/E_d)+1} D_a \]
Determine the Correction Factors for E_b

- determine the ratio for the actual wheelbase E_b
- the wheelbase is inversely proportion to the amount of rotation
 - we can state the following proportion
 - $\frac{b_{\text{actual}}}{\pi/2} = \frac{b_{\text{nominal}}}{\pi/2-\alpha}$
- determine actual ratio
 - $E_b = \frac{\pi/2}{\pi/2-\alpha}$
- correct the odometry
 - $b_{\text{actual}} = \frac{\pi/2}{\pi/2-\alpha} b_{\text{nominal}}$
Description of Random Errors

- **modeling** of the nonsystematic (random) error is important for consistent perception
- **simple solution**: treat the observation/estimation m as normal distributed random variable $m \sim \mathcal{N}(\mu_m, \sigma_m)$

\[
PDF(m) = \frac{1}{\sigma_m \sqrt{2\pi}} e^{-\frac{(m-\mu_m)^2}{2\sigma_m^2}}
\]

\[
P(a < m \leq b) = \int_a^b PDF(x)dx
\]

- if probability density function (PDF) is not Gaussian other means have to be used, e.g. sample-based
Nonlinear Error Propagation

- **question**: how is the error propagated by a nonlinear function f
 - assume vectors of normal distributed random variables, $x \sim \mathcal{N}(\mu_x, \Sigma_x)$, $y \sim \mathcal{N}(\mu_y, \Sigma_y)$, Σ ... covariance matrix
 - assume function f as vector of functions $y_i = f_i(x)$
- use the **Taylor-approximation** of f
Nonlinear Error Propagation

- Taylor-approximation of error propagation

\[\mu_y = f(\mu_x) \]
\[\Sigma_y = F_x \Sigma_x F_x^T \]

\[F_x = \nabla f = [\nabla x f(x)^T]^T = \begin{bmatrix} f_1 \\ \vdots \\ f_m \end{bmatrix} \begin{bmatrix} \frac{\partial}{\partial x_1} \\ \vdots \\ \frac{\partial}{\partial x_n} \end{bmatrix} = \begin{bmatrix} \frac{\partial f_1}{\partial x_1} & \ldots & \frac{\partial f_1}{\partial x_n} \\ \vdots & \ddots & \vdots \\ \frac{\partial f_m}{\partial x_1} & \ldots & \frac{\partial f_m}{\partial x_n} \end{bmatrix} \]

\(F_x \) ... Jacobean Matrix
Differential Drive

\[
x = \begin{bmatrix} x \\ y \\ \theta \end{bmatrix}
\]

\[
x_t = x_{t-1} + \begin{bmatrix} \Delta x \\ \Delta y \\ \Delta \theta \end{bmatrix} = f(x_{t-1}, u_t)
\]
Differential Drive Odometry

- the odometry sensor delivers
 - the traveled distance of the left and right wheel during the last sampling period: $\Delta s_l, \Delta s_r$
- the average travel distance of the robot is
 - $\Delta s = \frac{\Delta s_l + \Delta s_r}{2}$
- the change of orientation is
 - $\Delta \theta = \frac{\Delta s_r - \Delta s_l}{b}$
- the pose update is
 $$x_t = f(x_{t-1}, u_t) = \begin{bmatrix} x_{t-1} \\ y_{t-1} \\ \theta_{t-1} \end{bmatrix} + \begin{bmatrix} \Delta s \cos \left(\theta_{t-1} + \frac{\Delta \theta}{2} \right) \\ \Delta s \sin \left(\theta_{t-1} + \frac{\Delta \theta}{2} \right) \\ \Delta \theta \end{bmatrix}$$
Error Model I

• we treat the pose x as normal distributed vector of random variables
 • $x \sim \mathcal{N}(\mu_x, \Sigma_x)$

• we assume a covariance matrix to represent the nonsystematic errors of $\Delta s_l, \Delta s_r$
 • $\Sigma_\Delta = \begin{bmatrix} k_r|\Delta s_r| & 0 \\ 0 & k_l|\Delta s_l| \end{bmatrix}$
 • the errors of Δs_l and Δs_r assumed as independent
 • the error is proportional the distance, k_r and k_l are error constants

• using Taylor-approximation we get the following error propagation
 • $\Sigma_{x_t} = F_{x_{t-1}} \Sigma_{x_{t-1}} F_{x_{t-1}}^T + F_{\Delta s} \Sigma_\Delta F_{\Delta s}^T$
Error Model II

• we use the following Jacobean matrices:

\[F_{x_{t-1}} = \nabla f_{x_{t-1}} = \begin{bmatrix} \frac{\partial f}{\partial x} & \frac{\partial f}{\partial y} & \frac{\partial f}{\partial \theta} \end{bmatrix} = \begin{bmatrix} 1 & 0 & -\Delta_s \sin(\theta + \theta/2) \\ 0 & 1 & \Delta_s \cos(\theta + \theta/2) \\ 0 & 0 & 1 \end{bmatrix} \]

• \[F_{\Delta s} = \nabla_{\Delta s} f = \begin{bmatrix} \frac{\partial f}{\partial \Delta_r} & \frac{\partial f}{\partial \Delta_l} \end{bmatrix} = \begin{bmatrix} \frac{1}{2} \cos \left(\theta + \frac{\Delta \theta}{2} \right) - \frac{\Delta s}{2b} \sin \left(\theta + \frac{\Delta \theta}{2} \right) & \frac{1}{2} \cos \left(\theta + \frac{\Delta \theta}{2} \right) + \frac{\Delta s}{2b} \sin \left(\theta + \frac{\Delta \theta}{2} \right) \\ \frac{1}{2} \sin \left(\theta + \frac{\Delta \theta}{2} \right) + \frac{\Delta s}{2b} \cos \left(\theta + \frac{\Delta \theta}{2} \right) & \frac{1}{2} \sin \left(\theta + \frac{\Delta \theta}{2} \right) - \frac{\Delta s}{2b} \cos \left(\theta + \frac{\Delta \theta}{2} \right) \\ \frac{1}{b} & -\frac{1}{b} \end{bmatrix} \]
Growth of Uncertainty – Straight Line

errors perpendicular to the direction of movement are growing much faster!
Growth of Uncertainty – Circle

errors ellipse does not remain perpendicular to the direction of movement!

[Siegwart, Nourbakhsh, Scaramuzza, 2011, MIT Press]
Non-Gaussian Error Model

errors are not shaped like ellipses! use non-parametric representations, e.g. particles

[Fox, Thrun, Burgard, Dellaert, 2000]
Literature

Questions?
Thank you!